AIMC Topic: Support Vector Machine

Clear Filters Showing 141 to 150 of 4696 articles

Compositional analysis of alternative protein blends using near and mid-infrared spectroscopy coupled with conventional and machine learning algorithms.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
The non-invasive real-time analysis of the composition of alternative, plant-based protein sources is important to control high moisture extrusion processes and ensure the quality and texture of the final extrudates used in the elaboration of meat an...

Thyroid nodule classification in ultrasound imaging using deep transfer learning.

BMC cancer
BACKGROUND: The accurate diagnosis of thyroid nodules represents a critical and frequently encountered challenge in clinical practice, necessitating enhanced precision in diagnostic methodologies. In this study, we investigate the predictive efficacy...

Multi-center study: ultrasound-based deep learning features for predicting Ki-67 expression in breast cancer.

Scientific reports
Applying deep learning algorithms to mine ultrasound features of breast cancer and construct a machine learning model that accurately predicts Ki-67 expression level. This multi-center retrospective study analyzed clinical and ultrasound data from 92...

Multiscale analysis of heart sound signals in the wavelet domain for heart murmur detection.

Scientific reports
A heart murmur is an atypical sound produced by blood flow through the heart. It can indicate a serious heart condition, so detecting heart murmurs is critical for identifying and managing cardiovascular diseases. However, current methods for identif...

Cell Wall-Based Machine Learning Models to Predict Plant Growth Using Onion Epidermis.

International journal of molecular sciences
The plant cell wall (CW) is a physical barrier that plays a dual role in plant physiology, providing structural support for growth and development. Understanding the dynamics of CW growth is crucial for optimizing crop yields. In this study, we emplo...

Which approach better predicts diabetes: Traditional econometric methods or machine learning? Evidence from a cross-sectional study in South Korea.

Computers in biology and medicine
To prevent chronic disease from getting worse, it is important to detect and predict it at an early stage. Therefore, the accuracy of the prediction is particularly important. To investigate the accuracy of different methods, this study compares the ...

Deep Learning-Based Detection of Aflatoxin B1 Contamination in Almonds Using Hyperspectral Imaging: A Focus on Optimized 3D Inception-ResNet Model.

Toxins
Aflatoxin B1, a toxic carcinogen frequently contaminating almonds, nuts, and food products, poses significant health risks. Therefore, a rapid and non-destructive detection method is crucial to detect aflatoxin B1-contaminated almonds to ensure food ...

Vowel segmentation impact on machine learning classification for chronic obstructive pulmonary disease.

Scientific reports
Vowel-based voice analysis is gaining attention as a potential non-invasive tool for COPD classification, offering insights into phonatory function. The growing need for voice data has necessitated the adoption of various techniques, including segmen...

Machine learning allows robust classification of lung neoplasm tissue using an electronic biopsy through minimally-invasive electrical impedance spectroscopy.

Scientific reports
New bronchoscopy techniques like radial probe endobronchial ultrasound have been developed for real-time sampling characterization, but their use is still limited. This study aims to use classification algorithms with minimally invasive electrical im...

Development of PDAC diagnosis and prognosis evaluation models based on machine learning.

BMC cancer
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is difficult to detect early and highly aggressive, often leading to poor patient prognosis. Existing serum biomarkers like CA19-9 are limited in early diagnosis, failing to meet clinical needs. Mac...