Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Apr 24, 2024
Dual-energy computed tomography (CT) is an excellent substitute for identifying bone marrow edema in magnetic resonance imaging. However, it is rarely used in practice owing to its low contrast. To overcome this problem, we constructed a framework ba...
BACKGROUND: Interstitial lung abnormalities (ILAs) on CT may affect the clinical outcomes in patients with chronic obstructive pulmonary disease (COPD), but their quantification remains unestablished. This study examined whether artificial intelligen...
Journal of cachexia, sarcopenia and muscle
Apr 22, 2024
BACKGROUND: Computed tomography (CT) body compositions reflect age-related metabolic derangements. We aimed to develop a multi-outcome deep learning model using CT multi-level body composition parameters to detect metabolic syndrome (MS), osteoporosi...
BACKGROUND: Liver lesions mainly occur inside the liver parenchyma, which are difficult to locate and have complicated relationships with essential vessels. Thus, preoperative planning is crucial for the resection of liver lesions. Accurate segmentat...
BACKGROUND: Tools to increase the turnaround speed and accuracy of imaging reports could positively influence ED logistics. The Caire ICH is an artificial intelligence (AI) software developed for ED physicians to recognise intracranial haemorrhages (...
PURPOSE: To compare the image quality and pulmonary nodule detectability between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction-Veo (ASIR-V) in ultra-low-dose CT (ULD-CT).
Coronavirus disease 2019 (COVID-19), originating in China, has rapidly spread worldwide. Physicians must examine infected patients and make timely decisions to isolate them. However, completing these processes is difficult due to limited time and ava...
Journal of imaging informatics in medicine
Apr 18, 2024
While dual-energy computed tomography (DECT) technology introduces energy-specific information in clinical practice, single-energy CT (SECT) is predominantly used, limiting the number of people who can benefit from DECT. This study proposed a novel m...
OBJECTIVES: To distinguish histological subtypes of renal tumors using radiomic features and machine learning (ML) based on multiphase computed tomography (CT).
Accurate detection of axillary lymph node (ALN) metastases in breast cancer is crucial for clinical staging and treatment planning. This study aims to develop a deep learning model using clinical implication-applied preprocessed computed tomography ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.