AIMC Topic: Tomography, X-Ray Computed

Clear Filters Showing 181 to 190 of 4956 articles

XCAT 3.0: A comprehensive library of personalized digital twins derived from CT scans.

Medical image analysis
Virtual Imaging Trials (VIT) offer a cost-effective and scalable approach for evaluating medical imaging technologies. Computational phantoms, which mimic real patient anatomy and physiology, play a central role in VITs. However, the current librarie...

Deep Learning-enhanced Opportunistic Osteoporosis Screening in Ultralow-Voltage (80 kV) Chest CT: A Preliminary Study.

Academic radiology
RATIONALE AND OBJECTIVES: To explore the feasibility of deep learning (DL)-enhanced, fully automated bone mineral density (BMD) measurement using the ultralow-voltage 80 kV chest CT scans performed for lung cancer screening.

Detecting the left atrial appendage in CT localizers using deep learning.

Scientific reports
Patients with cardioembolic stroke often undergo CT of the left atrial appendage (LAA), for example, to determine whether thrombi are present in the LAA. To guide the imaging process, technologists first perform a localizer scan, which is a prelimina...

Deep learning model for predicting the RAS oncogene status in colorectal cancer liver metastases.

Journal of cancer research and therapeutics
BACKGROUND: To develop a deep learning radiomics (DLR) model based on contrast-enhanced computed tomography (CECT) to assess the rat sarcoma (RAS) oncogene status and predict targeted therapy response in colorectal cancer liver metastases (CRLM).

Communication Efficient Federated Learning for Multi-Organ Segmentation via Knowledge Distillation With Image Synthesis.

IEEE transactions on medical imaging
Federated learning (FL) methods for multi-organ segmentation in CT scans are gaining popularity, but generally require numerous rounds of parameter exchange between a central server and clients. This repetitive sharing of parameters between server an...

Unsupervised Domain Adaptation for Low-Dose CT Reconstruction via Bayesian Uncertainty Alignment.

IEEE transactions on neural networks and learning systems
Low-dose computed tomography (LDCT) image reconstruction techniques can reduce patient radiation exposure while maintaining acceptable imaging quality. Deep learning (DL) is widely used in this problem, but the performance of testing data (also known...

A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

BMC medical imaging
BACKGROUND: The adrenal glands are small retroperitoneal organs, few reference standards exist for adrenal CT measurements in clinical practice. This study aims to develop a deep learning (DL) model for automated adrenal gland segmentation on non-con...

Deep Learning Model of Primary Tumor and Metastatic Cervical Lymph Nodes From CT for Outcome Predictions in Oropharyngeal Cancer.

JAMA network open
IMPORTANCE: Primary tumor (PT) and metastatic cervical lymph node (LN) characteristics are highly associated with oropharyngeal squamous cell carcinoma (OPSCC) prognosis. Currently, there is a lack of studies to combine imaging characteristics of bot...

A deep learning-based clinical-radiomics model predicting the treatment response of immune checkpoint inhibitors (ICIs)-based conversion therapy in potentially convertible hepatocelluar carcinoma patients: a tumor marker prognostic study.

International journal of surgery (London, England)
BACKGROUND: The majority of patients with hepatocellular carcinoma (HCC) miss the opportunity of radical resection, making immune check-point inhibitors (ICIs)-based conversion therapy a primary option. However, challenges persist in predicting respo...

Impact of Photon-counting Detector Computed Tomography on a Quantitative Interstitial Lung Disease Machine Learning Model.

Journal of thoracic imaging
PURPOSE: Compare the impact of photon-counting detector computed tomography (PCD-CT) to conventional CT on an interstitial lung disease (ILD) quantitative machine learning (QML) model.