AIMC Topic: Transcription Factors

Clear Filters Showing 131 to 140 of 200 articles

Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach.

Scientific reports
Machine learning systems have recently received increased attention for their broad applications in several fields. In this study, we show for the first time that histological types of breast tumors can be classified using subtle morphological differ...

Identification of transcription factors that may reprogram lung adenocarcinoma.

Artificial intelligence in medicine
BACKGROUND: Lung adenocarcinoma is one of most threatening disease to human health. Although many efforts have been devoted to its genetic study, few researches have been focused on the transcription factors which regulate tumor initiation and progre...

Imputation for transcription factor binding predictions based on deep learning.

PLoS computational biology
Understanding the cell-specific binding patterns of transcription factors (TFs) is fundamental to studying gene regulatory networks in biological systems, for which ChIP-seq not only provides valuable data but is also considered as the gold standard....

A high-order representation and classification method for transcription factor binding sites recognition in Escherichia coli.

Artificial intelligence in medicine
BACKGROUND: Identifying transcription factors binding sites (TFBSs) plays an important role in understanding gene regulatory processes. The underlying mechanism of the specific binding for transcription factors (TFs) is still poorly understood. Previ...

Correcting the impact of docking pose generation error on binding affinity prediction.

BMC bioinformatics
BACKGROUND: Pose generation error is usually quantified as the difference between the geometry of the pose generated by the docking software and that of the same molecule co-crystallised with the considered protein. Surprisingly, the impact of this e...

DiscMLA: An Efficient Discriminative Motif Learning Algorithm over High-Throughput Datasets.

IEEE/ACM transactions on computational biology and bioinformatics
The transcription factors (TFs) can activate or suppress gene expression by binding to specific sites, hence are crucial regulatory elements for transcription. Recently, series of discriminative motif finders have been tailored to offering promising ...

g:Profiler-a web server for functional interpretation of gene lists (2016 update).

Nucleic acids research
Functional enrichment analysis is a key step in interpreting gene lists discovered in diverse high-throughput experiments. g:Profiler studies flat and ranked gene lists and finds statistically significant Gene Ontology terms, pathways and other gene ...

Learning a hierarchical representation of the yeast transcriptomic machinery using an autoencoder model.

BMC bioinformatics
BACKGROUND: A living cell has a complex, hierarchically organized signaling system that encodes and assimilates diverse environmental and intracellular signals, and it further transmits signals that control cellular responses, including a tightly con...

Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.

BMC bioinformatics
BACKGROUND: Understanding the mechanisms by which transcription factors (TF) are recruited to their physiological target sites is crucial for understanding gene regulation. DNA sequence intrinsic features such as predicted binding affinity are often ...