AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Transcription Factors

Showing 141 to 150 of 189 articles

Clear Filters

MultiSC: a deep learning pipeline for analyzing multiomics single-cell data.

Briefings in bioinformatics
Single-cell technologies enable researchers to investigate cell functions at an individual cell level and study cellular processes with higher resolution. Several multi-omics single-cell sequencing techniques have been developed to explore various as...

MLSNet: a deep learning model for predicting transcription factor binding sites.

Briefings in bioinformatics
Accurate prediction of transcription factor binding sites (TFBSs) is essential for understanding gene regulation mechanisms and the etiology of diseases. Despite numerous advances in deep learning for predicting TFBSs, their performance can still be ...

An integrated machine-learning model to predict nucleosome architecture.

Nucleic acids research
We demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined n...

BertSNR: an interpretable deep learning framework for single-nucleotide resolution identification of transcription factor binding sites based on DNA language model.

Bioinformatics (Oxford, England)
MOTIVATION: Transcription factors are pivotal in the regulation of gene expression, and accurate identification of transcription factor binding sites (TFBSs) at high resolution is crucial for understanding the mechanisms underlying gene regulation. T...

Reinventing gene expression connectivity through regulatory and spatial structural empowerment via principal node aggregation graph neural network.

Nucleic acids research
The intricacies of the human genome, manifested as a complex network of genes, transcend conventional representations in text or numerical matrices. The intricate gene-to-gene relationships inherent in this complexity find a more suitable depiction i...

The developmental and evolutionary characteristics of transcription factor binding site clustered regions based on an explainable machine learning model.

Nucleic acids research
Gene expression is temporally and spatially regulated by the interaction of transcription factors (TFs) and cis-regulatory elements (CREs). The uneven distribution of TF binding sites across the genome poses challenges in understanding how this distr...

SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network.

Bioinformatics (Oxford, England)
MOTIVATION: The rise of single-cell RNA sequencing (scRNA-seq) technology presents new opportunities for constructing detailed cell type-specific gene regulatory networks (GRNs) to study cell heterogeneity. However, challenges caused by noises, techn...

Supervised learning of enhancer-promoter specificity based on genome-wide perturbation studies highlights areas for improvement in learning.

Bioinformatics (Oxford, England)
MOTIVATION: Understanding the rules that govern enhancer-driven transcription remains a central unsolved problem in genomics. Now with multiple massively parallel enhancer perturbation assays published, there are enough data that we can utilize to le...

PTFSpot: deep co-learning on transcription factors and their binding regions attains impeccable universality in plants.

Briefings in bioinformatics
Unlike animals, variability in transcription factors (TFs) and their binding regions (TFBRs) across the plants species is a major problem that most of the existing TFBR finding software fail to tackle, rendering them hardly of any use. This limitatio...

DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations.

Briefings in bioinformatics
Inferring gene regulatory networks (GRNs) allows us to obtain a deeper understanding of cellular function and disease pathogenesis. Recent advances in single-cell RNA sequencing (scRNA-seq) technology have improved the accuracy of GRN inference. Howe...