AIMC Topic: Tumor Microenvironment

Clear Filters Showing 31 to 40 of 338 articles

A Tc1- and Th1-T-lymphocyte-rich tumor microenvironment is a hallmark of MSI colorectal cancer.

The Journal of pathology
Microsatellite instability is a strong predictor of response to immune checkpoint therapy and patient outcome in colorectal cancer. Although enrichment of distinct T-cell subpopulations has been determined to impact the response to immune checkpoint ...

Multiomics evaluation and machine learning optimize molecular classification, prediction of prognosis and immunotherapy response for ovarian cancer.

Pathology, research and practice
BACKGROUND: Ovarian cancer (OC), owing to its substantial heterogeneity and high invasiveness, has historically been devoid of precise, individualized treatment options. This study aimed to establish integrated consensus subtypes of OC using differen...

Machine learning based intratumor heterogeneity related signature for prognosis and drug sensitivity in breast cancer.

Scientific reports
Intratumor heterogeneity (ITH) is involved in tumor evolution and drug resistance. Drug sensitivity shows discrepancy in different breast cancer (BRCA) patients due to ITH. The genes mediating ITH in BRCA and their role in predicting prognosis and dr...

SIMVI disentangles intrinsic and spatial-induced cellular states in spatial omics data.

Nature communications
Spatial omics technologies enable analysis of gene expression and interaction dynamics in relation to tissue structure and function. However, existing computational methods may not properly distinguish cellular intrinsic variability and intercellular...

Artificial intelligence-based virtual staining platform for identifying tumor-associated macrophages from hematoxylin and eosin-stained images.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: Virtual staining is an artificial intelligence-based approach that transforms pathology images between stain types, such as hematoxylin and eosin (H&E) to immunohistochemistry (IHC), providing a tissue-preserving and efficient alternative...

A tumor-infiltrating B lymphocytes -related index based on machine-learning predicts prognosis and immunotherapy response in lung adenocarcinoma.

Frontiers in immunology
INTRODUCTION: Tumor-infiltrating B lymphocytes (TILBs) play a pivotal role in shaping the immune microenvironment of tumors (TIME) and in the progression of lung adenocarcinoma (LUAD). However, there remains a scarcity of research that has thoroughly...

Multimodal diagnostic models and subtype analysis for neoadjuvant therapy in breast cancer.

Frontiers in immunology
BACKGROUND: Breast cancer, a heterogeneous malignancy, comprises multiple subtypes and poses a substantial threat to women's health globally. Neoadjuvant therapy (NAT), administered prior to surgery, is integral to breast cancer treatment strategies....

Machine learning reveals glycolytic key gene in gastric cancer prognosis.

Scientific reports
Glycolysis is recognized as a central metabolic pathway in the neoplastic evolution of gastric cancer, exerting profound effects on the tumor microenvironment and the neoplastic growth trajectory. However, the identification of key glycolytic genes t...

Nano biosensor unlocks tumor derived immune signals for the early detection of ovarian cancer.

Biosensors & bioelectronics
Ovarian cancer is a critical health issue for women nowadays. Its impact is significant because of its high mortality rate (324,603 worldwide), late-stage diagnosis and poor survival rate. Lack of screening tests, vague symptoms, misdiagnosis, and ag...

Advanced pathological subtype classification of thyroid cancer using efficientNetB0.

Diagnostic pathology
BACKGROUND: Thyroid cancer is a prevalent malignancy requiring accurate subtype identification for effective treatment planning and prognosis evaluation. Deep learning has emerged as a valuable tool for analyzing tumor microenvironment features and d...