RATIONALE AND OBJECTIVES: Efficient communication between radiologists and clinicians ordering computed tomography (CT) examinations is crucial for managing high-risk incidental CT findings (ICTFs). Herein, we introduced a Radiologist's Alert and Pat...
RATIONALE AND OBJECTIVES: Recent radiomics studies on predicting pathological outcomes of glioma have shown immense potential. However, the predictive ability remains suboptimal due to the tumor intrinsic heterogeneity. We aimed to achieve better pat...
RATIONALE AND OBJECTIVES: This study evaluated the performance of super-resolution deep learning-based reconstruction (SR-DLR) and compared with it that of hybrid iterative reconstruction (HIR) and normal-resolution DLR (NR-DLR) for enhancing image q...
RATIONALE AND OBJECTIVES: In this preliminary study, we aimed to develop a deep learning model using ultrasound single view cines that distinguishes between imaging of normal gallbladder, non-urgent cholelithiasis, and acute calculous cholecystitis r...
RATIONALE AND OBJECTIVES: Traumatic neuroradiological emergencies necessitate rapid and accurate diagnosis, often relying on computed tomography (CT). However, the associated ionizing radiation poses long-term risks. Modern artificial intelligence re...
RATIONALE AND OBJECTIVES: To develop and validate a deep learning model for automated pathological grading and prognostic assessment of lung cancer using CT imaging, thereby providing surgeons with a non-invasive tool to guide surgical planning.
RATIONALE AND OBJECTIVES: To develop and validate multimodal deep-learning models based on clinical variables, multiparametric MRI (mp-MRI) and hematoxylin and eosin (HE) stained pathology slides for predicting microsatellite instability (MSI) status...
RATIONALE AND OBJECTIVES: This study aimed to develop a deep learning (DL) prognostic model to evaluate the significance of intra- and peritumoral radiomics in predicting outcomes for high-grade serous ovarian cancer (HGSOC) patients receiving platin...
RATIONALE AND OBJECTIVES: Isocitrate dehydrogenase 1 (IDH1) is a potential therapeutic target across various tumor types. Here, we aimed to devise a radiomic model capable of predicting the IDH1 expression levels in patients with head and neck squamo...
RATIONALE AND OBJECTIVES: Current radiomics research primarily focuses on intratumoral regions and fixed peritumoral areas, lacking optimization for accurate Ki-67 prediction. This study aimed to develop machine learning (ML) models to analyze radiom...