AI Medical Compendium Journal:
Cells

Showing 41 to 50 of 58 articles

Effect of Oxidized LDL on Platelet Shape, Spreading, and Migration Investigated with Deep Learning Platelet Morphometry.

Cells
Platelets are functionally versatile blood cells involved in thrombosis, hemostasis, atherosclerosis, and immune response. Platelet interaction with the immediate microenvironment in blood, vasculature, and tissues alters platelet morphology. The qua...

Role of Deep Learning in Predicting Aging-Related Diseases: A Scoping Review.

Cells
Aging refers to progressive physiological changes in a cell, an organ, or the whole body of an individual, over time. Aging-related diseases are highly prevalent and could impact an individual's physical health. Recently, artificial intelligence (AI)...

Machine Learning Assisted Classification of Cell Lines and Cell States on Quantitative Phase Images.

Cells
In this report, we present implementation and validation of machine-learning classifiers for distinguishing between cell types (HeLa, A549, 3T3 cell lines) and states (live, necrosis, apoptosis) based on the analysis of optical parameters derived fro...

Deep Learning to Decipher the Progression and Morphology of Axonal Degeneration.

Cells
Axonal degeneration (AxD) is a pathological hallmark of many neurodegenerative diseases. Deciphering the morphological patterns of AxD will help to understand the underlying mechanisms and develop effective therapies. Here, we evaluated the progressi...

Single Cell Analysis of Stored Red Blood Cells Using Ultra-High Throughput Holographic Cytometry.

Cells
Holographic cytometry is introduced as an ultra-high throughput implementation of quantitative phase imaging of single cells flowing through parallel microfluidic channels. Here, the approach was applied for characterizing the morphology of individua...

Neuroinflammation and Alzheimer's Disease: A Machine Learning Approach to CSF Proteomics.

Cells
In Alzheimer's disease (AD), the contribution of pathophysiological mechanisms other than amyloidosis and tauopathy is now widely recognized, although not clearly quantifiable by means of fluid biomarkers. We aimed to identify quantifiable protein bi...

Artificial Intelligence & Tissue Biomarkers: Advantages, Risks and Perspectives for Pathology.

Cells
Tissue Biomarkers are information written in the tissue and used in Pathology to recognize specific subsets of patients with diagnostic, prognostic or predictive purposes, thus representing the key elements of Personalized Medicine. The advent of Art...

Detecting Interactive Gene Groups for Single-Cell RNA-Seq Data Based on Co-Expression Network Analysis and Subgraph Learning.

Cells
High-throughput sequencing technologies have enabled the generation of single-cell RNA-seq (scRNA-seq) data, which explore both genetic heterogeneity and phenotypic variation between cells. Some methods have been proposed to detect the related genes ...

DNC4mC-Deep: Identification and Analysis of DNA N4-Methylcytosine Sites Based on Different Encoding Schemes By Using Deep Learning.

Cells
N4-methylcytosine as one kind of modification of DNA has a critical role which alters genetic performance such as protein interactions, conformation, stability in DNA as well as the regulation of gene expression same cell developmental and genomic im...

GPS-PBS: A Deep Learning Framework to Predict Phosphorylation Sites that Specifically Interact with Phosphoprotein-Binding Domains.

Cells
Protein phosphorylation is essential for regulating cellular activities by modifying substrates at specific residues, which frequently interact with proteins containing phosphoprotein-binding domains (PPBDs) to propagate the phosphorylation signaling...