AIMC Journal:
Computer methods and programs in biomedicine

Showing 651 to 660 of 863 articles

Combining convolutional neural networks and star convex cuts for fast whole spine vertebra segmentation in MRI.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: We propose an automatic approach for fast vertebral body segmentation in three-dimensional magnetic resonance images of the whole spine. Previous works are limited to the lower thoracolumbar section and often take minutes to...

Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Skin melanoma is one of the major health problems in many countries. Dermatologists usually diagnose melanoma by visual inspection of moles. Digital hair removal can provide a non-invasive way to remove hair and hair-like re...

A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Patients with End- Stage Kidney Disease (ESKD) have a unique cardiovascular risk. This study aims at predicting, with a certain precision, death and cardiovascular diseases in dialysis patients.

Surgical skill levels: Classification and analysis using deep neural network model and motion signals.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Currently, the assessment of surgical skills relies primarily on the observations of expert surgeons. This may be time-consuming, non-scalable, inconsistent and subjective. Therefore, an automated system that can objectivel...

Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Magnetic resonance imaging (MRI) is an indispensable tool in diagnosing brain-tumor patients. Automated tumor segmentation is being widely researched to accelerate the MRI analysis and allow clinicians to precisely plan trea...

A new approach for arrhythmia classification using deep coded features and LSTM networks.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: For diagnosis of arrhythmic heart problems, electrocardiogram (ECG) signals should be recorded and monitored. The long-term signal records obtained are analyzed by expert cardiologists. Devices such as the Holter monitor hav...

A RR interval based automated apnea detection approach using residual network.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Apnea is one of the most common conditions that causes sleep-disorder breathing. With growing number of patients worldwide, more and more patients suffer from complications of apnea. But most of them stay untreated due to th...

A review of automated sleep stage scoring based on physiological signals for the new millennia.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Sleep is an important part of our life. That importance is highlighted by the multitude of health problems which result from sleep disorders. Detecting these sleep disorders requires an accurate interpretation of physiologic...

Extracting chemical-protein interactions from biomedical literature via granular attention based recurrent neural networks.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: The extraction of interactions between chemicals and proteins from biomedical literature is important for many biomedical tasks such as drug discovery and precision medicine. In the existing systems, the methods achieving co...