OBJECTIVE: Accurate detection and segmentation of organs at risks (OARs) in CT image is the key step for efficient planning of radiation therapy for nasopharyngeal carcinoma (NPC) treatment. We develop a fully automated deep-learning-based method (te...
OBJECTIVE: We aimed to identify optimal machine-learning methods for preoperative differentiation of sacral chordoma (SC) and sacral giant cell tumour (SGCT) based on 3D non-enhanced computed tomography (CT) and CT-enhanced (CTE) features.
OBJECTIVES: To predict cavernous sinus (CS) invasion by pituitary adenomas (PAs) pre-operatively using a radiomics method based on contrast-enhanced T1 (CE-T1) and T2-weighted magnetic resonance (MR) imaging.
OBJECTIVE: To evaluate the performance of quantitative computed tomography (CT) texture analysis using different machine learning (ML) classifiers for discriminating low and high nuclear grade clear cell renal cell carcinomas (cc-RCCs).
The recent explosion of 'big data' has ushered in a new era of artificial intelligence (AI) algorithms in every sphere of technological activity, including medicine, and in particular radiology. However, the recent success of AI in certain flagship a...
OBJECTIVES: The preoperative prediction of the WHO grade of a meningioma is important for further treatment plans. This study aimed to assess whether texture analysis (TA) based on apparent diffusion coefficient (ADC) maps could non-invasively classi...
OBJECTIVES: Magnetic resonance imaging (MRI) is the method of choice for imaging meningiomas. Volumetric assessment of meningiomas is highly relevant for therapy planning and monitoring. We used a multiparametric deep-learning model (DLM) on routine ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.