OBJECTIVES: This study aims to investigate radiologists' interpretation errors when reading dense screening mammograms using a radiomics-based artificial intelligence approach.
OBJECTIVES: Body composition assessment using CT images at the L3-level is increasingly applied in cancer research and has been shown to be strongly associated with long-term survival. Robust high-throughput automated segmentation is key to assess la...
OBJECTIVES: To evaluate the performance of ultrasound-based deep learning (DL) models in distinguishing breast phyllodes tumours (PTs) from fibroadenomas (FAs) and their clinical utility in assisting radiologists with varying diagnostic experiences.
OBJECTIVES: Telomerase reverse transcriptase promoter (pTERT) mutation status plays a key role in making decisions and predicting prognoses for patients with World Health Organization (WHO) grade IV glioma. This study was conducted to assess the valu...
OBJECTIVES: To develop and validate machine learning models for human epidermal growth factor receptor 2 (HER2)-zero and HER2-low using MRI features pre-neoadjuvant therapy (NAT).
The licensing of antifibrotic therapy for fibrotic lung diseases, including idiopathic pulmonary fibrosis (IPF), has created an urgent need for reliable biomarkers to predict disease progression and treatment response. Some patients experience stable...
OBJECTIVES: To investigate the usefulness of super-resolution deep learning reconstruction (SR-DLR) with cardiac option in the assessment of image quality in patients with stent-assisted coil embolization, coil embolization, and flow-diverting stent ...
OBJECTIVE: To evaluate whether the CT attenuation of bones seen on shoulder CT scans could be used to predict low bone mineral density (BMD) (osteopenia/osteoporosis), and to compare the performance of two machine learning models to predict low BMD.
OBJECTIVES: This study aimed to assess the impact of super-resolution deep learning reconstruction (SR-DLR) on coronary CT angiography (CCTA) image quality and blooming artifacts from coronary artery stents in comparison to conventional methods, incl...
OBJECTIVES: To evaluate the performance of machine learning models in predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer using magnetic resonance imaging.