AIMC Topic: Aged, 80 and over

Clear Filters Showing 341 to 350 of 3331 articles

Exploring determinant factors influencing muscle quality and sarcopenia in Bilbao's older adult population through machine learning: A comprehensive analysis approach.

PloS one
BACKGROUND: Sarcopenia and reduced muscle quality index have garnered special attention due to their prevalence among older individuals and the adverse effects they generate. Early detection of these geriatric pathologies holds significant potential,...

Machine Learning Prediction for Postdischarge Falls in Older Adults: A Multicenter Prospective Study.

Journal of the American Medical Directors Association
OBJECTIVES: The study aimed to develop a machine learning (ML) model to predict early postdischarge falls in older adults using data that are easy to collect in acute care hospitals. This may reduce the burden imposed by complex measures on patients ...

Predicting local control of brain metastases after stereotactic radiotherapy with clinical, radiomics and deep learning features.

Radiation oncology (London, England)
BACKGROUND AND PURPOSE: Timely identification of local failure after stereotactic radiotherapy for brain metastases allows for treatment modifications, potentially improving outcomes. While previous studies showed that adding radiomics or Deep Learni...

Machine learning-based prognostic modeling in gallbladder cancer using clinical data and pre-treatment [F]-FDG-PET-radiomic features.

Japanese journal of radiology
OBJECTIVES: This study evaluates the effectiveness of machine learning (ML) models that incorporate clinical and 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-radiomic features for predicting outcomes in gallbladder cance...

Early prediction of functional impairment at hospital discharge in patients with osteoporotic vertebral fracture: a machine learning approach.

Scientific reports
Although conservative treatment is commonly used for osteoporotic vertebral fracture (OVF), some patients experience functional disability following OVF. This study aimed to develop prediction models for new-onset functional impairment following admi...

Predictive modelling of hospital-acquired infection in acute ischemic stroke using machine learning.

Scientific reports
Hospital-acquired infections (HAIs) are serious complication for patients with acute ischemic stroke (AIS), often resulting in poor functional outcomes. However, no existing model can specifically predict HAI in AIS patients. Therefore, we employed t...

A proficient approach for the classification of Alzheimer's disease using a hybridization of machine learning and deep learning.

Scientific reports
Alzheimer's disease (AD) is a neurodegenerative disorder. It causes progressive degeneration of the nervous system, affecting the cognitive ability of the human brain. Over the past two decades, neuroimaging data from Magnetic Resonance Imaging (MRI)...