AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Aged, 80 and over

Showing 51 to 60 of 3142 articles

Clear Filters

Social robot PIO intervention for improving cognitive function and depression in older adults with mild to moderate dementia in day care centers: A randomized controlled trial.

PloS one
The increases in the older population, the prevalence of dementia, and the resulting social costs are burdensome to individuals, families, and the nation. This study examines whether the social robot PIO program intervention is effective for cognitiv...

Explainable machine learning framework for biomarker discovery by combining biological age and frailty prediction.

Scientific reports
Biological age (BA) and frailty represent two distinct health measures that offer valuable insights into the aging process. Comparing and analyzing blood-based biomarkers from the machine learning (ML) predictors of BA and frailty helps deepen our un...

The clinical significance of an AI-based assumption model for neurocognitive diseases using a novel dual-task system.

Scientific reports
Dual-task composed of gait or stepping tasks combined with cognitive tasks has been well-established as valuable tools for detecting neurocognitive disorders such as mild cognitive impairment and early-stage Alzheimer's disease. We previously develop...

Frailty identification using a sensor-based upper-extremity function test: a deep learning approach.

Scientific reports
The global increase in the older adult population highlights the need for effective frailty assessment, a condition linked to adverse health outcomes such as hospitalization and mortality. Existing frailty assessment tools, like the Fried phenotype a...

Machine Learning Models for Frailty Classification of Older Adults in Northern Thailand: Model Development and Validation Study.

JMIR aging
BACKGROUND: Frailty is defined as a clinical state of increased vulnerability due to the age-associated decline of an individual's physical function resulting in increased morbidity and mortality when exposed to acute stressors. Early identification ...

WMH-DualTasker: A Weakly Supervised Deep Learning Model for Automated White Matter Hyperintensities Segmentation and Visual Rating Prediction.

Human brain mapping
White matter hyperintensities (WMH) are neuroimaging markers linked to an elevated risk of cognitive decline. WMH severity is typically assessed via visual rating scales and through volumetric segmentation. While visual rating scales are commonly use...

Estimating individualized effectiveness of receiving successful recanalization for ischemic stroke cases using machine learning techniques.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
OBJECTIVES: Directly measuring the causal effect of mechanical thrombectomy (MT) for each ischemic stroke patient remains challenging, as it is impossible to observe the outcomes for both with and without successful recanalization in the same individ...

Factors influencing the estimation of phacoemulsification procedure time in cataract surgery: Analysis using neural networks.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Realistic and accurate estimation of the surgery duration is one of the key factors influencing the optimization of hospital work and, consequently, the planning and management of the budget. In the present study, the author...

Deep learning-driven multi-class classification of brain strokes using computed tomography: A step towards enhanced diagnostic precision.

European journal of radiology
OBJECTIVE: To develop and validate deep learning models leveraging CT imaging for the prediction and classification of brain stroke conditions, with the potential to enhance accuracy and support clinical decision-making.