AIMC Topic: Aged, 80 and over

Clear Filters Showing 891 to 900 of 3433 articles

New liver window width in detecting hepatocellular carcinoma on dynamic contrast-enhanced computed tomography with deep learning reconstruction.

Radiological physics and technology
Changing a window width (WW) alters appearance of noise and contrast of CT images. The aim of this study was to investigate the impact of adjusted WW for deep learning reconstruction (DLR) in detecting hepatocellular carcinomas (HCCs) on CT with DLR....

Machine Learning of Cardiac Anatomy and the Risk of New-Onset Atrial Fibrillation After TAVR.

JACC. Clinical electrophysiology
BACKGROUND: New-onset atrial fibrillation (NOAF) occurs in 5% to 15% of patients who undergo transfemoral transcatheter aortic valve replacement (TAVR). Cardiac imaging has been underutilized to predict NOAF following TAVR.

Random forest differentiation of Escherichia coli in elderly sepsis using biomarkers and infectious sites.

Scientific reports
This study addresses the challenge of accurately diagnosing sepsis subtypes in elderly patients, particularly distinguishing between Escherichia coli (E. coli) and non-E. coli infections. Utilizing machine learning, we conducted a retrospective analy...

Oral anticoagulant treatment in atrial fibrillation: the AFIRMA real-world study using natural language processing and machine learning.

Revista clinica espanola
INTRODUCTION: Oral anticoagulation (OAC) is key in atrial fibrillation (AF) thromboprophylaxis, but Spain lacks substantial real-world evidence. We aimed to analyze the prevalence, clinical characteristics, and treatment patterns among patients with ...

Does lifelong learning matter for the subjective wellbeing of the elderly? A machine learning analysis on Singapore data.

PloS one
Our study explores whether lifelong learning is associated with the subjective wellbeing among the elderly in Singapore. Through a primary survey of 300 individuals aged 65 and above, we develop a novel index to capture three different aspects of sub...

A Novel Machine Learning Model for Predicting Stroke-Associated Pneumonia After Spontaneous Intracerebral Hemorrhage.

World neurosurgery
BACKGROUND: Pneumonia is one of the most common complications after spontaneous intracerebral hemorrhage (sICH), i.e., stroke-associated pneumonia (SAP). Timely identification of targeted patients is beneficial to reduce poor prognosis. So far, there...

Prediction of subsequent fragility fractures: application of machine learning.

BMC musculoskeletal disorders
BACKGROUND: Machine learning (ML) has shown exceptional promise in various domains of medical research. However, its application in predicting subsequent fragility fractures is still largely unknown. In this study, we aim to evaluate the predictive p...

Phenotype clustering of hospitalized high-risk patients with COVID-19 - a machine learning approach within the multicentre, multinational PCHF-COVICAV registry.

Cardiology journal
IMTRODUCTION: The high-risk population of patients with cardiovascular (CV) disease or risk factors (RF) suffering from COVID-19 is heterogeneous. Several predictors for impaired prognosis have been identified. However, with machine learning (ML) app...

Deep Learning-Based Approach for Identifying and Measuring Focal Liver Lesions on Contrast-Enhanced MRI.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: The number of focal liver lesions (FLLs) detected by imaging has increased worldwide, highlighting the need to develop a robust, objective system for automatically detecting FLLs.