AIMC Topic: Aged

Clear Filters Showing 3081 to 3090 of 12959 articles

Significance of Image Reconstruction Parameters for Future Lung Cancer Risk Prediction Using Low-Dose Chest Computed Tomography and the Open-Access Sybil Algorithm.

Investigative radiology
PURPOSE: Sybil is a validated publicly available deep learning-based algorithm that can accurately predict lung cancer risk from a single low-dose computed tomography (LDCT) scan. We aimed to study the effect of image reconstruction parameters and CT...

Development of Machine Learning Models to Categorize Life Satisfaction in Older Adults in Korea.

Journal of preventive medicine and public health = Yebang Uihakhoe chi
OBJECTIVES: This study aimed to identify factors associated with life satisfaction by developing machine learning (ML) models to predict life satisfaction in older adults living alone.

Deep learning-based approach for acquisition time reduction in ventilation SPECT in patients after lung transplantation.

Radiological physics and technology
We aimed to evaluate the image quality and diagnostic performance of chronic lung allograft dysfunction (CLAD) with lung ventilation single-photon emission computed tomography (SPECT) images acquired briefly using a convolutional neural network (CNN)...

Automated Identification of Heart Failure With Reduced Ejection Fraction Using Deep Learning-Based Natural Language Processing.

JACC. Heart failure
BACKGROUND: The lack of automated tools for measuring care quality limits the implementation of a national program to assess guideline-directed care in heart failure with reduced ejection fraction (HFrEF).

Inter- and intra-rater reliability of cognitive assessment conducted by assistive robot for older adults living in the community: a preliminary study.

Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society
BACKGROUND: The purpose of this study was to reveal inter- and intra-rater reliability of the detailed evaluation of cognitive function by assistive robot for older adults.

Machine learning-based prediction of sarcopenia in community-dwelling middle-aged and older adults: findings from the CHARLS.

Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society
BACKGROUND: Sarcopenia is a prominent issue among aging populations and associated with poor health outcomes. This study aimed to examine the predictive value of questionnaire and biomarker data for sarcopenia, and to further develop a user-friendly ...

Identifying cardiovascular disease risk in the U.S. population using environmental volatile organic compounds exposure: A machine learning predictive model based on the SHAP methodology.

Ecotoxicology and environmental safety
BACKGROUND: Cardiovascular disease (CVD) remains a leading cause of mortality globally. Environmental pollutants, specifically volatile organic compounds (VOCs), have been identified as significant risk factors. This study aims to develop a machine l...

Implementing AI-Driven Bed Sensors: Perspectives from Interdisciplinary Teams in Geriatric Care.

Sensors (Basel, Switzerland)
Sleep is a crucial aspect of geriatric assessment for hospitalized older adults, and implementing AI-driven technology for sleep monitoring can significantly enhance the rehabilitation process. Sleepsense, an AI-driven sleep-tracking device, provides...

Predicting laboratory aspirin resistance in Chinese stroke patients using machine learning models by GP1BA polymorphism.

Pharmacogenomics
This study aims to use machine learning model to predict laboratory aspirin resistance (AR) in Chinese stroke patients by incorporating patient characteristics and single nucleotide polymorphisms of and . 2405 patients were analyzed to measure the M...

Multiparametric MRI-Based Deep Learning Models for Preoperative Prediction of Tumor Deposits in Rectal Cancer and Prognostic Outcome.

Academic radiology
RATIONALE AND OBJECTIVES: To investigate the predictive value of a deep learning model based on multiparametric MRI (mpMRI) for tumor deposit (TD) in rectal cancer (RC) patients and to analyze their prognosis.