AIMC Topic: Aged

Clear Filters Showing 3961 to 3970 of 13244 articles

Characterizing the Adoption and Experiences of Users of Artificial Intelligence-Generated Health Information in the United States: Cross-Sectional Questionnaire Study.

Journal of medical Internet research
BACKGROUND: OpenAI's ChatGPT is a source of advanced online health information (OHI) that may be integrated into individuals' health information-seeking routines. However, concerns have been raised about its factual accuracy and impact on health outc...

Identification of medication-related fall risk in adults and older adults admitted to hospital: A machine learning approach.

Geriatric nursing (New York, N.Y.)
The study aimed to develop and validate, through machine learning, a fall risk prediction model related to prescribed medications specific to adults and older adults admitted to hospital. A case-control study was carried out in a tertiary hospital, i...

Applying masked autoencoder-based self-supervised learning for high-capability vision transformers of electrocardiographies.

PloS one
The generalization of deep neural network algorithms to a broader population is an important challenge in the medical field. We aimed to apply self-supervised learning using masked autoencoders (MAEs) to improve the performance of the 12-lead electro...

Optimizing Acute Stroke Segmentation on MRI Using Deep Learning: Self-Configuring Neural Networks Provide High Performance Using Only DWI Sequences.

Journal of imaging informatics in medicine
Segmentation of infarcts is clinically important in ischemic stroke management and prognostication. It is unclear what role the combination of DWI, ADC, and FLAIR MRI sequences provide for deep learning in infarct segmentation. Recent technologies in...

A Deep-Learning-Enabled Electrocardiogram and Chest X-Ray for Detecting Pulmonary Arterial Hypertension.

Journal of imaging informatics in medicine
The diagnosis and treatment of pulmonary hypertension have changed dramatically through the re-defined diagnostic criteria and advanced drug development in the past decade. The application of Artificial Intelligence for the detection of elevated pulm...

Three-Dimensional Deep Learning Normal Tissue Complication Probability Model to Predict Late Xerostomia in Patients With Head and Neck Cancer.

International journal of radiation oncology, biology, physics
PURPOSE: Conventional normal tissue complication probability (NTCP) models for patients with head and neck cancer are typically based on single-value variables, which, for radiation-induced xerostomia, are baseline xerostomia and mean salivary gland ...

Automatic Detection of Fatigued Gait Patterns in Older Adults: An Intelligent Portable Device Integrating Force and Inertial Measurements with Machine Learning.

Annals of biomedical engineering
PURPOSE: This study aimed to assess the feasibility of early detection of fatigued gait patterns for older adults through the development of a smart portable device.