AIMC Topic: Aged

Clear Filters Showing 81 to 90 of 12387 articles

Exploring the association between volatile organic compound exposure and chronic kidney disease: evidence from explainable machine learning methods.

Renal failure
BACKGROUND: Chronic Kidney Disease (CKD) affects approximately 697.5 million people worldwide. Volatile organic compounds (VOCs) are emerging as potential risk factors, but their complex relationships with CKD may be underestimated by traditional lin...

[Incidental pulmonary nodules on CT imaging: what to do?].

Nederlands tijdschrift voor geneeskunde
Incidental pulmonary nodules are very frequently found on CT imaging and may represent (early stage) lung cancers without any signs or symptoms. These incidental findings can be solid lesions or ground glass lesions that may be solitary or multiple. ...

Harnessing the machine learning and nomogram models: elevating prognostication in nonmetastatic gastric cancer with "double invasion" for personalized patient care.

European journal of medical research
OBJECTIVE: To develop and validate a machine learning framework combined with a nomogram for predicting recurrence after radical gastrectomy in patients with vascular and neural invasion.

Exploring Factors Related to Social Isolation Among Older Adults in the Predementia Stage Using Ecological Momentary Assessments and Actigraphy: Machine Learning Approach.

Journal of medical Internet research
BACKGROUND: As the global population ages, the economic burden of dementia continues to rise. Social isolation-which includes limited social interaction and feelings of loneliness-negatively affects cognitive function and is a significant risk factor...

A machine learning model for mortality prediction in patients with severe fever with thrombocytopenia syndrome: a prospective, multicenter cohort study.

Emerging microbes & infections
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease that imposes a considerable medical burden. In this study, we enrolled 1,606 SFTS patients, developed and validated machine learning models for mortality prediction,...

Development of a Machine Learning-Based Predictive Model for Postoperative Delirium in Older Adult Intensive Care Unit Patients: Retrospective Study.

Journal of medical Internet research
BACKGROUND: Delirium is a prevalent phenomenon among patients admitted to the geriatric intensive care unit (ICU) and can adversely impact prognosis and augment the risk of complications.

The Rapid Online Cognitive Assessment for the Detection of Neurocognitive Disorder: Open-Label Study.

Journal of medical Internet research
BACKGROUND: The rising prevalence of dementia necessitates a scalable solution to cognitive screening. Paper-based cognitive screening examinations are well-validated but minimally scalable. If a digital cognitive screening examination could replicat...

Deep learning detects retropharyngeal edema on MRI in patients with acute neck infections.

European radiology experimental
BACKGROUND: In acute neck infections, magnetic resonance imaging (MRI) shows retropharyngeal edema (RPE), which is a prognostic imaging biomarker for a severe course of illness. This study aimed to develop a deep learning-based algorithm for the auto...