AIMC Topic: Alzheimer Disease

Clear Filters Showing 151 to 160 of 1008 articles

Alzheimer's disease: an integrative bioinformatics and machine learning analysis reveals glutamine metabolism-associated gene biomarkers.

BMC pharmacology & toxicology
BACKGROUND: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect...

Natural language processing-based classification of early Alzheimer's disease from connected speech.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: The automated analysis of connected speech using natural language processing (NLP) emerges as a possible biomarker for Alzheimer's disease (AD). However, it remains unclear which types of connected speech are most sensitive and specific...

An unsupervised learning approach for clustering joint trajectories of Alzheimer's disease biomarkers: An application to ADNI Data.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Current models of Alzheimer's disease (AD) progression assume a common pattern and pathology, oversimplifying the heterogeneity of clinical AD.

Alzheimer's Disease: Exploring Pathophysiological Hypotheses and the Role of Machine Learning in Drug Discovery.

International journal of molecular sciences
Alzheimer's disease (AD) is a major neurodegenerative dementia, with its complex pathophysiology challenging current treatments. Recent advancements have shifted the focus from the traditionally dominant amyloid hypothesis toward a multifactorial und...

Enhanced detection of mild cognitive impairment in Alzheimer's disease: a hybrid model integrating dual biomarkers and advanced machine learning.

BMC geriatrics
Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder marked by cognitive decline and memory loss. Early diagnosis is the most effective strategy to slow the disease's progression. Mild Cognitive Impairment (...

Multimodal multiview bilinear graph convolutional network for mild cognitive impairment diagnosis.

Biomedical physics & engineering express
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease (AD) and can serve as an important indicator of disease progression. However, many existing methods focus mainly on the image when processing b...

Dual inhibition of AChE and MAO-B in Alzheimer's disease: machine learning approaches and model interpretations.

Molecular diversity
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases. Given the multifactorial pathophysiology of AD, monotargeted agents can only alleviate symptoms but not cure AD. Acetylcholinesterase (AChE) and Monoamine oxidase B (MA...

Recognition and classification of facial expression using artificial intelligence as a key of early detection in neurological disorders.

Reviews in the neurosciences
The recognition and classification of facial expressions using artificial intelligence (AI) presents a promising avenue for early detection and monitoring of neurodegenerative disorders. This narrative review critically examines the current state of ...

Machine learning models for dementia screening to classify brain amyloid positivity on positron emission tomography using blood markers and demographic characteristics: a retrospective observational study.

Alzheimer's research & therapy
BACKGROUND: Intracerebral amyloid β (Aβ) accumulation is considered the initial observable event in the pathological process of Alzheimer's disease (AD). Efficient screening for amyloid pathology is critical for identifying patients for early treatme...