AIMC Topic: Alzheimer Disease

Clear Filters Showing 491 to 500 of 1023 articles

Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network.

Computational and mathematical methods in medicine
Alzheimer's disease (AD) is one of the most important causes of mortality in elderly people, and it is often challenging to use traditional manual procedures when diagnosing a disease in the early stages. The successful implementation of machine lear...

Prediction of post-stroke cognitive impairment using brain FDG PET: deep learning-based approach.

European journal of nuclear medicine and molecular imaging
PURPOSE: Post-stroke cognitive impairment can affect up to one third of stroke survivors. Since cognitive function greatly contributes to patients' quality of life, an objective quantitative biomarker for early prediction of dementia after stroke is ...

A Systematic Literature Review on Particle Swarm Optimization Techniques for Medical Diseases Detection.

Computational and mathematical methods in medicine
Artificial Intelligence (AI) is the domain of computer science that focuses on the development of machines that operate like humans. In the field of AI, medical disease detection is an instantly growing domain of research. In the past years, numerous...

Unified AI framework to uncover deep interrelationships between gene expression and Alzheimer's disease neuropathologies.

Nature communications
Deep neural networks (DNNs) capture complex relationships among variables, however, because they require copious samples, their potential has yet to be fully tapped for understanding relationships between gene expression and human phenotypes. Here we...

Deep learning-based model for diagnosing Alzheimer's disease and tauopathies.

Neuropathology and applied neurobiology
AIMS: This study aimed to develop a deep learning-based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau-immunostai...

Dual Attention Multi-Instance Deep Learning for Alzheimer's Disease Diagnosis With Structural MRI.

IEEE transactions on medical imaging
Structural magnetic resonance imaging (sMRI) is widely used for the brain neurological disease diagnosis, which could reflect the variations of brain. However, due to the local brain atrophy, only a few regions in sMRI scans have obvious structural c...

DeepAtrophy: Teaching a neural network to detect progressive changes in longitudinal MRI of the hippocampal region in Alzheimer's disease.

NeuroImage
Measures of change in hippocampal volume derived from longitudinal MRI are a well-studied biomarker of disease progression in Alzheimer's disease (AD) and are used in clinical trials to track therapeutic efficacy of disease-modifying treatments. Howe...

Deep learning assisted quantitative assessment of histopathological markers of Alzheimer's disease and cerebral amyloid angiopathy.

Acta neuropathologica communications
Traditionally, analysis of neuropathological markers in neurodegenerative diseases has relied on visual assessments of stained sections. Resulting semiquantitative scores often vary between individual raters and research centers, limiting statistical...

Random walks on B distributed resting-state functional connectivity to identify Alzheimer's disease and Mild Cognitive Impairment.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
OBJECTIVE: Resting-state functional connectivity reveals a promising way for the early detection of dementia. This study proposes a novel method to accurately classify Healthy Controls, Early Mild Cognitive Impairment, Late Mild Cognitive Impairment,...

Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer's disease in a cross-sectional multi-cohort study.

Scientific reports
Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regre...