AIMC Topic: Antineoplastic Combined Chemotherapy Protocols

Clear Filters Showing 31 to 40 of 143 articles

Predicting response to neoadjuvant chemotherapy for colorectal liver metastasis using deep learning on prechemotherapy cross-sectional imaging.

Journal of surgical oncology
BACKGROUND AND OBJECTIVES: Deep learning models (DLMs) are applied across domains of health sciences to generate meaningful predictions. DLMs make use of neural networks to generate predictions from discrete data inputs. This study employs DLM on pre...

Machine Learning-Based Prediction of Pathological Responses and Prognosis After Neoadjuvant Chemotherapy for Non-Small-Cell Lung Cancer: A Retrospective Study.

Clinical lung cancer
BACKGROUND: Neoadjuvant chemotherapy has variable efficacy in patients with non-small-cell lung cancer (NSCLC), yet reliable noninvasive predictive markers are lacking. This study aimed to develop a radiomics model predicting pathological complete re...

SNSynergy: Similarity network-based machine learning framework for synergy prediction towards new cell lines and new anticancer drug combinations.

Computational biology and chemistry
The computational method has been proven to be a promising means for pre-screening large-scale anticancer drug combinations to support precision oncology applications. Pioneering efforts have been made to develop machine learning technology for predi...

Machine Learning Predicts Oxaliplatin Benefit in Early Colon Cancer.

Journal of clinical oncology : official journal of the American Society of Clinical Oncology
PURPOSE: A combination of fluorouracil, leucovorin, and oxaliplatin (FOLFOX) is the standard for adjuvant therapy of resected early-stage colon cancer (CC). Oxaliplatin leads to lasting and disabling neurotoxicity. Reserving the regimen for patients ...

Deep learning-guided adjuvant chemotherapy selection for elderly patients with breast cancer.

Breast cancer research and treatment
PURPOSE: The efficacy of adjuvant chemotherapy in elderly breast cancer patients is currently controversial. This study aims to provide personalized adjuvant chemotherapy recommendations using deep learning (DL).

Translating prognostic quantification of c-MYC and BCL2 from tissue microarrays to whole slide images in diffuse large B-cell lymphoma using deep learning.

Diagnostic pathology
BACKGROUND: c-MYC and BCL2 positivity are important prognostic factors for diffuse large B-cell lymphoma. However, manual quantification is subject to significant intra- and inter-observer variability. We developed an automated method for quantificat...

An interpretable artificial intelligence framework for designing synthetic lethality-based anti-cancer combination therapies.

Journal of advanced research
INTRODUCTION: Synthetic lethality (SL) provides an opportunity to leverage different genetic interactions when designing synergistic combination therapies. To further explore SL-based combination therapies for cancer treatment, it is important to ide...

SurvIAE: Survival prediction with Interpretable Autoencoders from Diffuse Large B-Cells Lymphoma gene expression data.

Computer methods and programs in biomedicine
BACKGROUND: In Diffuse Large B-Cell Lymphoma (DLBCL), several methodologies are emerging to derive novel biomarkers to be incorporated in the risk assessment. We realized a pipeline that relies on autoencoders (AE) and Explainable Artificial Intellig...