AIMC Topic: Antiviral Agents

Clear Filters Showing 11 to 20 of 196 articles

Enhancing the understandings on SARS-CoV-2 main protease (M) mutants from molecular dynamics and machine learning.

International journal of biological macromolecules
While star drugs like Paxlovid have shown remarkable performance in combating SARS-CoV-2, we still face serious challenges such as viral mutants and resistance. In this study, we employ a computational framework combining molecular dynamics (MD) simu...

Direct-acting antivirals (DAA) positively affect depression and cognitive function in patients with chronic hepatitis C.

PloS one
The aim of the study was to determine how depression and cognitive dysfunction in patients with chronic hepatitis C virus (HCV) infection are affected by treatment with direct-acting antivirals (DAA). Fifty-two chronic hepatitis C patients underwent ...

Deep learning in the discovery of antiviral peptides and peptidomimetics: databases and prediction tools.

Molecular diversity
Antiviral peptides (AVPs) represent a novel and promising therapeutic alternative to conventional antiviral treatments, due to their broad-spectrum activity, high specificity, and low toxicity. The emergence of zoonotic viruses such as Zika, Ebola, a...

Machine Learning-Guided Screening and Molecular Docking for Proposing Naturally Derived Drug Candidates Against MERS-CoV 3CL Protease.

International journal of molecular sciences
In this study, we utilized machine learning techniques to identify potential inhibitors of the MERS-CoV 3CL protease. Among the models evaluated, the Random Forest (RF) algorithm exhibited the highest predictive performance, achieving an accuracy of ...

A Review of In Silico Approaches for Discovering Natural Viral Protein Inhibitors in Aquaculture Disease Control.

Journal of fish diseases
Viral diseases pose a significant threat to the sustainability of global aquaculture, causing economic losses and compromising food security. Traditional control methods often demonstrate limited effectiveness, highlighting the need for alternative a...

Enhancing HCV NS3 Inhibitor Classification with Optimized Molecular Fingerprints Using Random Forest.

International journal of molecular sciences
The classification of Hepatitis C virus (HCV) NS3 inhibitors is essential for identifying potential antiviral agents through computational methods. This study aims to develop an optimized machine learning (ML) model using random forest (RF) and molec...

Exploring the repository of de novo-designed bifunctional antimicrobial peptides through deep learning.

eLife
Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distribu...

Characterizing Public Sentiments and Drug Interactions in the COVID-19 Pandemic Using Social Media: Natural Language Processing and Network Analysis.

Journal of medical Internet research
BACKGROUND: While the COVID-19 pandemic has induced massive discussion of available medications on social media, traditional studies focused only on limited aspects, such as public opinions, and endured reporting biases, inefficiency, and long collec...

Estimation of Ganciclovir Exposure in Adults Transplant Patients by Machine Learning.

The AAPS journal
INTRODUCTION: Valganciclovir, a prodrug of ganciclovir (GCV), is used to prevent cytomegalovirus infection after transplantation, with doses adjusted based on creatinine clearance (CrCL) to target GCV AUC0-24 h of 40-60 mg*h/L. This sometimes leads t...

Identification of Biomarkers for Response to Interferon in Chronic Hepatitis B Based on Bioinformatics Analysis and Machine Learning.

Viral immunology
Interferon (IFN) is a pivotal agent against hepatitis B virus (HBV) in clinic, but there is a lack of accurate biomarkers to predict the response to IFN therapy in patients with chronic hepatitis B (CHB). Our study aimed to investigate potential targ...