AIMC Topic: Area Under Curve

Clear Filters Showing 41 to 50 of 1167 articles

Mortality Prediction in Patients With Breast Cancer by Artificial Neural Network Model and Elastic Net Regression.

Journal of research in health sciences
BACKGROUND: Breast cancer (BC) is the most common cancer in women, and it is important to identify models that can accurately predict mortality in patients with this cancer. The aim of the present study was to use the elastic net regression and artif...

Area under the ROC Curve has the most consistent evaluation for binary classification.

PloS one
The proper use of model evaluation metrics is important for model evaluation and model selection in binary classification tasks. This study investigates how consistent different metrics are at evaluating models across data of different prevalence whi...

Predicting preterm birth using electronic medical records from multiple prenatal visits.

BMC pregnancy and childbirth
This study aimed to predict preterm birth in nulliparous women using machine learning and easily accessible variables from prenatal visits. Elastic net regularized logistic regression models were developed and evaluated using 5-fold cross-validation ...

Enhancing classification of active and non-active lesions in multiple sclerosis: machine learning models and feature selection techniques.

BMC medical imaging
INTRODUCTION: Gadolinium-based T1-weighted MRI sequence is the gold standard for the detection of active multiple sclerosis (MS) lesions. The performance of machine learning (ML) and deep learning (DL) models in the classification of active and non-a...

Robust multi-modal fusion architecture for medical data with knowledge distillation.

Computer methods and programs in biomedicine
BACKGROUND: The fusion of multi-modal data has been shown to significantly enhance the performance of deep learning models, particularly on medical data. However, missing modalities are common in medical data due to patient specificity, which poses a...

Artificial Intelligence in Diagnostics: Enhancing Urine Test Accuracy Using a Mobile Phone-Based Reading System.

Annals of laboratory medicine
BACKGROUND: Urinalysis, an essential diagnostic tool, faces challenges in terms of standardization and accuracy. The use of artificial intelligence (AI) with mobile technology can potentially solve these challenges. Therefore, we investigated the eff...

Residual risk prediction in anticoagulated patients with atrial fibrillation using machine learning: A report from the GLORIA-AF registry phase II/III.

European journal of clinical investigation
BACKGROUND: Although oral anticoagulation decreases the risk of thromboembolism in patients with atrial fibrillation (AF), a residual risk of thrombotic events still exists. This study aimed to construct machine learning (ML) models to predict the re...

Prediction of mortality in sepsis patients using stacked ensemble machine learning algorithm.

Journal of postgraduate medicine
INTRODUCTION: Machine learning (ML) has been tried in predicting outcomes following sepsis. This study aims to identify the utility of stacked ensemble algorithm in predicting mortality.