AIMC Topic: Blood Glucose

Clear Filters Showing 121 to 130 of 290 articles

Blood glucose concentration prediction based on VMD-KELM-AdaBoost.

Medical & biological engineering & computing
The time series of blood glucose concentration in diabetic patients are time-varying, nonlinear, and non-stationary. In order to improve the accuracy of blood glucose prediction, a multi-scale combination short-term blood glucose prediction model was...

Application of Machine Learning to Assess Interindividual Variability in Rapid-Acting Insulin Responses After Subcutaneous Injection in People With Type 1 Diabetes.

Canadian journal of diabetes
OBJECTIVES: Circulating insulin concentrations mediate vascular-inflammatory and prothrombotic factors. However, it is unknown whether interindividual differences in circulating insulin levels are associated with different inflammatory and prothrombo...

Learning Carbohydrate Digestion and Insulin Absorption Curves Using Blood Glucose Level Prediction and Deep Learning Models.

Sensors (Basel, Switzerland)
Type 1 diabetes is a chronic disease caused by the inability of the pancreas to produce insulin. Patients suffering type 1 diabetes depend on the appropriate estimation of the units of insulin they have to use in order to keep blood glucose levels in...

Generalizability of heterogeneous treatment effects based on causal forests applied to two randomized clinical trials of intensive glycemic control.

Annals of epidemiology
Purpose Machine learning is an attractive tool for identifying heterogeneous treatment effects (HTE) of interventions but generalizability of machine learning derived HTE remains unclear. We examined generalizability of HTE detected using causal fore...

Machine Learning to Identify Metabolic Subtypes of Obesity: A Multi-Center Study.

Frontiers in endocrinology
BACKGROUND AND OBJECTIVE: Clinical characteristics of obesity are heterogenous, but current classification for diagnosis is simply based on BMI or metabolic healthiness. The purpose of this study was to use machine learning to explore a more precise ...

Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: The Maastricht Study.

PloS one
BACKGROUND: Closed-loop insulin delivery systems, which integrate continuous glucose monitoring (CGM) and algorithms that continuously guide insulin dosing, have been shown to improve glycaemic control. The ability to predict future glucose values ca...

Predicting youth diabetes risk using NHANES data and machine learning.

Scientific reports
Prediabetes and diabetes mellitus (preDM/DM) have become alarmingly prevalent among youth in recent years. However, simple questionnaire-based screening tools to reliably assess diabetes risk are only available for adults, not youth. As a first step ...

Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning.

BMC endocrine disorders
INTRODUCTION: Recent studies have reported that HbA1c and lipid variability is useful for risk stratification in diabetes mellitus. The present study evaluated the predictive value of the baseline, subsequent mean of at least three measurements and v...

Machine Learning Techniques for Hypoglycemia Prediction: Trends and Challenges.

Sensors (Basel, Switzerland)
(1) Background: the use of machine learning techniques for the purpose of anticipating hypoglycemia has increased considerably in the past few years. Hypoglycemia is the drop in blood glucose below critical levels in diabetic patients. This may cause...