AIMC Topic: Brain

Clear Filters Showing 221 to 230 of 4056 articles

Interpretable modality-specific and interactive graph convolutional network on brain functional and structural connectomes.

Medical image analysis
Both brain functional connectivity (FC) and structural connectivity (SC) provide distinct neural mechanisms for cognition and neurological disease. In addition, interactions between SC and FC within distributed association regions are related to alte...

Exploring temporal information dynamics in Spiking Neural Networks: Fast Temporal Efficient Training.

Journal of neuroscience methods
BACKGROUND: Spiking Neural Networks (SNNs) hold significant potential in brain simulation and temporal data processing. While recent research has focused on developing neuron models and leveraging temporal dynamics to enhance performance, there is a ...

Deep learning to quantify the pace of brain aging in relation to neurocognitive changes.

Proceedings of the National Academy of Sciences of the United States of America
Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since bi...

Super-resolution mapping of anisotropic tissue structure with diffusion MRI and deep learning.

Scientific reports
Diffusion magnetic resonance imaging (diffusion MRI) is widely employed to probe the diffusive motion of water molecules within the tissue. Numerous diseases and processes affecting the central nervous system can be detected and monitored via diffusi...

Electroencephalogram (EEG) Based Fuzzy Logic and Spiking Neural Networks (FLSNN) for Advanced Multiple Neurological Disorder Diagnosis.

Brain topography
Neurological disorders are a major global health concern that have a substantial impact on death rates and quality of life. accurately identifying a number of diseases Due to inherent data uncertainties and Electroencephalogram (EEG) pattern overlap,...

Regional Cerebral Atrophy Contributes to Personalized Survival Prediction in Amyotrophic Lateral Sclerosis: A Multicentre, Machine Learning, Deformation-Based Morphometry Study.

Annals of neurology
OBJECTIVE: Accurate personalized survival prediction in amyotrophic lateral sclerosis is essential for effective patient care planning. This study investigates whether grey and white matter changes measured by magnetic resonance imaging can improve i...

Neurobiologically interpretable causal connectome for predicting young adult depression: A graph neural network study.

Journal of affective disorders
BACKGROUND: There is a surprising lack of neuroimaging studies of depression that not only identify the whole brain causal connectivity features but also explore whether these features have neurobiological correlates.

Hyperfusion: A hypernetwork approach to multimodal integration of tabular and medical imaging data for predictive modeling.

Medical image analysis
The integration of diverse clinical modalities such as medical imaging and the tabular data extracted from patients' Electronic Health Records (EHRs) is a crucial aspect of modern healthcare. Integrative analysis of multiple sources can provide a com...

Multi-feature fusion method combining brain functional connectivity and graph theory for schizophrenia classification and neuroimaging markers screening.

Journal of psychiatric research
BACKGROUND: The abnormalities in brain functional connectivity (FC) and graph topology (GT) in patients with schizophrenia (SZ) are unclear. Researchers proposed machine learning algorithms by combining FC or GT to identify SZ from healthy controls. ...

Effect of Parallel Cognitive-Motor Training Tasks on Hemodynamic Responses in Robot-Assisted Rehabilitation.

Brain connectivity
Previous studies suggest that the combination of robot-assisted training with other concurrent tasks may promote the functional recovery and improvement better than the single task. It is well-established that robot-assisted rehabilitation training ...