AIMC Topic: Breast Neoplasms

Clear Filters Showing 41 to 50 of 2157 articles

AI-assisted diffuse correlation tomography for identifying breast cancer.

Journal of biomedical optics
SIGNIFICANCE: Diffuse correlation tomography (DCT) is an emerging technique for the noninvasive measurement of breast microvascular blood flow, whereas its capability to categorize benign and malignant breast lesions has not been extensively validate...

A potential new strategy for BC treatment: NPs containing solanine and evaluation of its anticancer and antimetastatic properties.

BMC cancer
Solanine has been shown to inhibit cancer by regulating the expression of apoptosis (Bax, Bcl-2) and metastasis (CDH-1, MMP2) genes in various cancer cell types. We synthesized optimized niosome NPs (NPs) with high solubility and capacity for solanin...

BentRay-NeRF: Bent-Ray Neural Radiance Fields for Robust Speed-of-Sound Imaging in Ultrasound Computed Tomography.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound computed tomography (USCT) is a promising technique for breast cancer detection because of its quantitative imaging capability of the speed of sound (SOS) of soft tissues and the fact that malignant breast lesions often have a higher SOS c...

Deep learning-based computational approach for predicting ncRNAs-disease associations in metaplastic breast cancer diagnosis.

BMC cancer
Non-coding RNAs (ncRNAs) play a crucial role in breast cancer progression, necessitating advanced computational approaches for precise disease classification. This study introduces a Deep Reinforcement Learning (DRL)-based framework for predicting nc...

Supervised Information Mining From Weakly Paired Images for Breast IHC Virtual Staining.

IEEE transactions on medical imaging
Immunohistochemistry (IHC) examination is essential to determine the tumour subtypes, provide key prognostic factors, and develop personalized treatment plans for breast cancer. However, compared to Hematoxylin and Eosin (H&E) staining, the preparati...

Frozen Large-Scale Pretrained Vision-Language Models are the Effective Foundational Backbone for Multimodal Breast Cancer Prediction.

IEEE journal of biomedical and health informatics
Breast cancer is a pervasive global health concern among women. Leveraging multimodal data from enterprise patient databases-including Picture Archiving and Communication Systems (PACS) and Electronic Health Records (EHRs)-holds promise for improving...

Statistical algorithms for the analysis of deleterious genetic mutations.

Bio Systems
We present algorithms for model selection and parameter estimation concerning deleterious genetic mutations. Three models are considered: single gene mutation, double cross-effect mutations or no genetic cause. Each of these models include unknown pa...

Integrating attention networks into a hybrid model for HER2 status prediction in breast cancer.

Biochemical and biophysical research communications
Breast cancer is one of the most prevalent cancers amongst women, caused by uncontrolled cell growth in breast tissue. Human Epidermal growth factor Receptor 2 (HER2) proteins play a vital role in regulating normal breast cell development and divisio...

A deep learning-based multimodal medical imaging model for breast cancer screening.

Scientific reports
In existing breast cancer prediction research, most models rely solely on a single type of imaging data, which limits their performance. To overcome this limitation, the present study explores breast cancer prediction models based on multimodal medic...