AIMC Topic: Case-Control Studies

Clear Filters Showing 91 to 100 of 905 articles

Identification of 17 novel epigenetic biomarkers associated with anxiety disorders using differential methylation analysis followed by machine learning-based validation.

Clinical epigenetics
BACKGROUND: The changes in DNA methylation patterns may reflect both physical and mental well-being, the latter being a relatively unexplored avenue in terms of clinical utility for psychiatric disorders. In this study, our objective was to identify ...

Predicting antipsychotic responsiveness using a machine learning classifier trained on plasma levels of inflammatory markers in schizophrenia.

Translational psychiatry
We apply machine learning techniques to navigate the multifaceted landscape of schizophrenia. Our method entails the development of predictive models, emphasizing peripheral inflammatory biomarkers, which are classified into treatment response subgro...

A metabolic fingerprint of ovarian cancer: a novel diagnostic strategy employing plasma EV-based metabolomics and machine learning algorithms.

Journal of ovarian research
Ovarian cancer (OC) is the third most common malignant tumor of women and is accompanied by an alteration of systemic metabolism. A liquid biopsy that captures and detects tumor-related biomarkers in body fluids has great potential for OC diagnosis. ...

Interpretable machine learning-derived nomogram model for early detection of persistent diarrhea in Salmonella typhimurium enteritis: a propensity score matching based case-control study.

BMC infectious diseases
BACKGROUND: Salmonella typhimurium infection is a considerable global health concern, particularly in children, where it often leads to persistent diarrhea. This condition can result in severe health complications including malnutrition and cognitive...

Contrast-enhanced magnetic resonance imaging based calf muscle perfusion and machine learning in peripheral artery disease.

Scientific reports
Peripheral artery disease (PAD) remains underdiagnosed and undertreated and is associated with an increased risk for adverse cardiovascular outcomes. Imaging provides an approach to identifying patients with PAD. However, the role of integrating imag...

Unveiling NLR pathway signatures: EP300 and CPN60 markers integrated with clinical data and machine learning for precision NASH diagnosis.

Cytokine
BACKGROUND: Given the increasing prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) and non-alcoholic steatohepatitis (NASH), there is a critical need for accurate non-invasive early diagnostic markers.

You get the best of both worlds? Integrating deep learning and traditional machine learning for breast cancer risk prediction.

Computers in biology and medicine
Breast Cancer is the most commonly diagnosed cancer worldwide. While screening mammography diminishes the burden of this disease, it has some flaws related to the presence of false negatives. Adapting screening to each woman's needs could help overco...

Untargeted metabolomics and machine learning unveil the exposome and metabolism linked with the risk of early pregnancy loss.

Journal of hazardous materials
Early pregnancy loss (EPL) may result from exposure to emerging contaminants (ECs), although the underlying mechanisms remain poorly understood. This case-control study measured over 2000 serum features, including 37 ECs, 6 biochemicals, and 2057 end...

Risk factors and machine learning prediction models for intrahepatic cholestasis of pregnancy.

BMC pregnancy and childbirth
BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is a liver disorder that occurs in the second and third trimesters of pregnancy and is associated with a significant risk of fetal complications, including premature birth and fetal death. In cl...

Deep learning based prediction of depression and anxiety in patients with type 2 diabetes mellitus using regional electronic health records.

International journal of medical informatics
BACKGROUND: Depression and anxiety are prevalent mental health conditions among individuals with type 2 diabetes mellitus (T2DM), who exhibit unique vulnerabilities and etiologies. However, existing approaches fail to fully utilize regional heterogen...