AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Chromatin

Showing 1 to 10 of 132 articles

Clear Filters

DECA: harnessing interpretable transformer model for cellular deconvolution of chromatin accessibility profile.

Briefings in bioinformatics
The assay for transposase-accessible chromatin with sequencing (ATAC-seq) identifies chromatin accessibility across the genome, crucial for gene expression regulating. However, bulk ATAC-seq obscures cellular heterogeneity, while single-cell ATAC-seq...

A multi-modal transformer for cell type-agnostic regulatory predictions.

Cell genomics
Sequence-based deep learning models have emerged as powerful tools for deciphering the cis-regulatory grammar of the human genome but cannot generalize to unobserved cellular contexts. Here, we present EpiBERT, a multi-modal transformer that learns g...

Fluo-Cast-Bright: a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live oocytes.

Communications biology
In mammalian oocytes, large-scale chromatin organization regulates transcription, nuclear architecture, and maintenance of chromosome stability in preparation for meiosis onset. Pre-ovulatory oocytes with distinct chromatin configurations exhibit pro...

The role of chromatin state in intron retention: A case study in leveraging large scale deep learning models.

PLoS computational biology
Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they...

Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage.

Cell genomics
Deep learning models have advanced our ability to predict cell-type-specific chromatin patterns from transcription factor (TF) binding motifs, but their application to perturbed contexts remains limited. We applied transfer learning to predict how co...

deepTAD: an approach for identifying topologically associated domains based on convolutional neural network and transformer model.

Briefings in bioinformatics
MOTIVATION: Topologically associated domains (TADs) play a key role in the 3D organization and function of genomes, and accurate detection of TADs is essential for revealing the relationship between genomic structure and function. Most current method...

TRAPT: a multi-stage fused deep learning framework for predicting transcriptional regulators based on large-scale epigenomic data.

Nature communications
It is challenging to identify regulatory transcriptional regulators (TRs), which control gene expression via regulatory elements and epigenomic signals, in context-specific studies on the onset and progression of diseases. The use of large-scale mult...

CGLoop: a neural network framework for chromatin loop prediction.

BMC genomics
BACKGROUND: Chromosomes of species exhibit a variety of high-dimensional organizational features, and chromatin loops, which are fundamental structures in the three-dimensional (3D) structure of the genome. Chromatin loops are visible speckled patter...

DconnLoop: a deep learning model for predicting chromatin loops based on multi-source data integration.

BMC bioinformatics
BACKGROUND: Chromatin loops are critical for the three-dimensional organization of the genome and gene regulation. Accurate identification of chromatin loops is essential for understanding the regulatory mechanisms in disease. However, current mainst...

CREATE: cell-type-specific cis-regulatory element identification via discrete embedding.

Nature communications
Cis-regulatory elements (CREs), including enhancers, silencers, promoters and insulators, play pivotal roles in orchestrating gene regulatory mechanisms that drive complex biological traits. However, current approaches for CRE identification are pred...