AIMC Topic: Clinical Decision Rules

Clear Filters Showing 21 to 30 of 67 articles

Contextual Embeddings from Clinical Notes Improves Prediction of Sepsis.

AMIA ... Annual Symposium proceedings. AMIA Symposium
Sepsis, a life-threatening organ dysfunction, is a clinical syndrome triggered by acute infection and affects over 1 million Americans every year. Untreated sepsis can progress to septic shock and organ failure, making sepsis one of the leading cause...

Right population, right resources, right algorithm: Using machine learning efficiently and effectively in surgical systems where data are a limited resource.

Surgery
There is a growing interest in using machine learning algorithms to support surgical care, diagnostics, and public health surveillance in low- and middle-income countries. From our own experience and the literature, we share several lessons for devel...

Optimising an FFQ Using a Machine Learning Pipeline to teach an Efficient Nutrient Intake Predictive Model.

Nutrients
Food frequency questionnaires (FFQs) are the most commonly selected tools in nutrition monitoring, as they are inexpensive, easily implemented and provide useful information regarding dietary intake. They are usually carefully drafted by experts from...

Prediction of obstetrical and fetal complications using automated electronic health record data.

American journal of obstetrics and gynecology
An increasing number of delivering women experience major morbidity and mortality. Limited work has been done on automated predictive models that could be used for prevention. Using only routinely collected obstetrical data, this study aimed to devel...

Development and Validation of Machine Learning-Based Prediction for Dependence in the Activities of Daily Living after Stroke Inpatient Rehabilitation: A Decision-Tree Analysis.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND AND PURPOSE: Accurate prediction using simple and changeable variables is clinically meaningful because some known-predictors, such as stroke severity and patients age cannot be modified with rehabilitative treatment. There are limited cli...

Early Prediction of Acute Kidney Injury in the Emergency Department With Machine-Learning Methods Applied to Electronic Health Record Data.

Annals of emergency medicine
STUDY OBJECTIVE: Acute kidney injury occurs commonly and is a leading cause of prolonged hospitalization, development and progression of chronic kidney disease, and death. Early acute kidney injury treatment can improve outcomes. However, current dec...

Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure.

American heart journal
Machine learning and artificial intelligence are generating significant attention in the scientific community and media. Such algorithms have great potential in medicine for personalizing and improving patient care, including in the diagnosis and man...

Benchmarking machine learning models on multi-centre eICU critical care dataset.

PloS one
Progress of machine learning in critical care has been difficult to track, in part due to absence of public benchmarks. Other fields of research (such as computer vision and natural language processing) have established various competitions and publi...