AIMC Topic: Cognitive Dysfunction

Clear Filters Showing 61 to 70 of 540 articles

Enhanced detection of mild cognitive impairment in Alzheimer's disease: a hybrid model integrating dual biomarkers and advanced machine learning.

BMC geriatrics
Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder marked by cognitive decline and memory loss. Early diagnosis is the most effective strategy to slow the disease's progression. Mild Cognitive Impairment (...

"Tom and Pepper Lab". Robotics for cognitive stimulation and social skills: A preliminary study.

Asian journal of psychiatry
Dementia affects over 55 million people globally, with early cognitive decline, such as Mild Cognitive Impairment (MCI), often preceding neurodegenerative diseases. This decline impairs memory, attention, and Theory of Mind (ToM). Early intervention ...

Multimodal multiview bilinear graph convolutional network for mild cognitive impairment diagnosis.

Biomedical physics & engineering express
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease (AD) and can serve as an important indicator of disease progression. However, many existing methods focus mainly on the image when processing b...

Machine learning models for dementia screening to classify brain amyloid positivity on positron emission tomography using blood markers and demographic characteristics: a retrospective observational study.

Alzheimer's research & therapy
BACKGROUND: Intracerebral amyloid β (Aβ) accumulation is considered the initial observable event in the pathological process of Alzheimer's disease (AD). Efficient screening for amyloid pathology is critical for identifying patients for early treatme...

A machine learning-based model for predicting the risk of cognitive frailty in elderly patients on maintenance hemodialysis.

Scientific reports
Elderly patients undergoing maintenance hemodialysis (MHD) face a heightened risk of cognitive frailty (CF), which significantly compromises quality of life. Early identification of at-risk individuals and timely intervention are essential. Neverthel...

A Dynamic Adaptive Ensemble Learning Framework for Noninvasive Mild Cognitive Impairment Detection: Development and Validation Study.

JMIR medical informatics
BACKGROUND: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive scree...

DML-MFCM: A multimodal fine-grained classification model based on deep metric learning for Alzheimer's disease diagnosis.

Journal of X-ray science and technology
BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder. There are no drugs and methods for the treatment of AD, but early intervention can delay the deterioration of the disease. Therefore, the early diagnosis of AD and mild cognitive i...

Risk prediction model of cognitive performance in older people with cardiovascular diseases: a study of the National Health and Nutrition Examination Survey database.

Frontiers in public health
BACKGROUND AND AIM: Changes in cognitive function are commonly associated with aging in patients with cardiovascular diseases. The objective of this research was to construct and validate a nomogram-based predictive model for the identification of co...

Generation of high-resolution MPRAGE-like images from 3D head MRI localizer (AutoAlign Head) images using a deep learning-based model.

Japanese journal of radiology
PURPOSE: Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence, but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head) images to MPR...

Exploring the triglyceride-glucose index's role in depression and cognitive dysfunction: Evidence from NHANES with machine learning support.

Journal of affective disorders
BACKGROUND: Depression and cognitive impairments are prevalent among older adults, with evidence suggesting potential links to obesity and lipid metabolism disturbances. This study investigates the relationships between the triglyceride-glucose (TyG)...