BACKGROUND: We aimed to quantify hepatic vessel volumes across chronic liver disease stages and healthy controls using deep learning-based magnetic resonance imaging (MRI) analysis, and assess correlations with biomarkers for liver (dys)function and ...
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease worldwide, affecting over 30% of the global general population. Its progressive nature and association with other chronic diseases make...
PURPOSE: To develop and validate a hybrid radiomics model to predict the overall survival in pancreatic cancer patients and identify risk factors that affect patient prognosis.
BACKGROUND: Neoadjuvant therapy plays a pivotal role in breast cancer treatment, particularly for patients aiming to conserve their breast by reducing tumor size pre-surgery. The ultimate goal of this treatment is achieving a pathologic complete resp...
Accurate segmentation of the liver parenchyma, portal veins, hepatic veins, and lesions from MRI is important for hepatic disease monitoring and treatment. Multi-phase contrast enhanced imaging is superior in distinguishing hepatic structures compare...
To develop and validate artificial intelligence models based on contrast-enhanced CT(CECT) images of venous phase using deep learning (DL) and Radiomics approaches to predict lymphovascular invasion in gastric cancer prior to surgery. We retrospectiv...
Predicting the risk of breast cancer recurrence is crucial for guiding therapeutic strategies, including enhanced surveillance and the consideration of additional treatment after surgery. In this study, we developed a deep convolutional neural networ...
Cancer imaging : the official publication of the International Cancer Imaging Society
Jul 7, 2025
OBJECTIVES: The purpose of this study is to mainly develop a predictive model based on clinicoradiological and radiomics features from preoperative gadobenate-enhanced (Gd-BOPTA) magnetic resonance imaging (MRI) using multilayer perceptron (MLP) deep...
BACKGROUND: To evaluate the performance of deep learning models in classifying parotid gland tumors using T2-weighted, diffusion-weighted, and contrast-enhanced T1-weighted MR images, along with DCE data derived from time-intensity curves.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.