AIMC Topic: Contrast Media

Clear Filters Showing 51 to 60 of 546 articles

Performance of recurrent neural networks with Monte Carlo dropout for predicting pharmacokinetic parameters from dynamic contrast-enhanced magnetic resonance imaging data.

Journal of applied clinical medical physics
PURPOSE: To quantitatively evaluate the performance of two types of recurrent neural networks (RNNs), long short-term memory (LSTM) and gated recurrent units (GRU), using Monte Carlo dropout (MCD) to predict pharmacokinetic (PK) parameters from dynam...

Combination of deep learning reconstruction and quantification for dynamic contrast-enhanced (DCE) MRI.

Magnetic resonance imaging
Dynamic contrast-enhanced (DCE) MRI is an important imaging tool for evaluating tumor vascularity that can lead to improved characterization of tumor extent and heterogeneity, and for early assessment of treatment response. However, clinical adoption...

Reliability of post-contrast deep learning-based highly accelerated cardiac cine MRI for the assessment of ventricular function.

Magnetic resonance imaging
OBJECTIVE: The total examination time can be reduced if high-quality two-dimensional (2D) cine images can be collected post-contrast to minimize non-scanning time prior to late gadolinium-enhanced imaging. This study aimed to assess the equivalency o...

Generative Adversarial Network Based Contrast Enhancement: Synthetic Contrast Brain Magnetic Resonance Imaging.

Academic radiology
RATIONALE AND OBJECTIVES: Magnetic resonance imaging (MRI) is a vital tool for diagnosing neurological disorders, frequently utilising gadolinium-based contrast agents (GBCAs) to enhance resolution and specificity. However, GBCAs present certain risk...

Detection of late gadolinium enhancement in patients with hypertrophic cardiomyopathy using machine learning.

International journal of cardiology
BACKGROUND: Late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) in hypertrophic cardiomyopathy (HCM) typically represents myocardial fibrosis and may lead to fatal ventricular arrhythmias. However, CMR is resource-intensive and some...

Quantitative analysis of deep learning reconstruction in CT angiography: Enhancing CNR and reducing dose.

Journal of X-ray science and technology
BACKGROUND: Computed tomography angiography (CTA) provides significant information on image quality in vascular imaging, thus offering high-resolution images despite having the disadvantages of increased radiation doses and contrast agent-related sid...

Accurate prediction of pollution and health risks of iodinated X-ray contrast media in Taihu Lake with machine learning and revealing key environmental factors.

Water research
Iodinated X-ray contrast media (ICM) are commonly detected at considerable concentrations in aquatic environments. The long-term pollution trends in ICM at the whole lake/river scale have not yet been investigated; therefore, the risks associated wit...