AIMC Topic: Decision Trees

Clear Filters Showing 81 to 90 of 547 articles

Improved survival prediction for kidney transplant outcomes using artificial intelligence-based models: development of the UK Deceased Donor Kidney Transplant Outcome Prediction (UK-DTOP) Tool.

Renal failure
The UK Deceased Donor Kidney Transplant Outcome Prediction (UK-DTOP) Tool, developed using advanced artificial intelligence (AI), significantly enhances the prediction of outcomes for deceased-donor kidney transplants in the UK. This study analyzed d...

BCCHI-HCNN: Breast Cancer Classification from Histopathological Images Using Hybrid Deep CNN Models.

Journal of imaging informatics in medicine
Breast cancer is the most common cancer in women globally, imposing a significant burden on global public health due to high death rates. Data from the World Health Organization show an alarming annual incidence of nearly 2.3 million new cases, drawi...

Dielectric spectroscopy technology combined with machine learning methods for nondestructive detection of protein content in fresh milk.

Journal of food science
To quickly achieve nondestructive detection of protein content in fresh milk, this study utilized a network analyzer and an open coaxial probe to analyze the dielectric spectra of milk samples at 100 frequency points within the 2-20 GHz range, focusi...

Machine learning models for predicting treatment response in infantile epilepsies.

Epilepsy & behavior : E&B
UNLABELLED: Epilepsy stands as one of the prevalent and significant neurological disorders, representing a critical healthcare challenge. Recently, machine learning techniques have emerged as versatile tools across various healthcare domains, encompa...

TDFFM: Transformer and Deep Forest Fusion Model for Predicting Coronavirus 3C-Like Protease Cleavage Sites.

IEEE/ACM transactions on computational biology and bioinformatics
COVID-19, caused by the highly contagious SARS-CoV-2 virus, is distinguished by its positive-sense, single-stranded RNA genome. A thorough understanding of SARS-CoV-2 pathogenesis is crucial for halting its proliferation. Notably, the 3C-like proteas...

Predictive modeling of arginine vasopressin deficiency after transsphenoidal pituitary adenoma resection by using multiple machine learning algorithms.

Scientific reports
This study aimed to predict arginine vasopressin deficiency (AVP-D) following transsphenoidal pituitary adenoma surgery using machine learning algorithms. We reviewed 452 cases from December 2013 to December 2023, analyzing clinical and imaging data....

Detection of cardiovascular disease cases using advanced tree-based machine learning algorithms.

Scientific reports
Cardiovascular disease (CVD) can often lead to serious consequences such as death or disability. This study aims to identify a tree-based machine learning method with the best performance criteria for the detection of CVD. This study analyzed data co...

Comparison of RNN-LSTM, TFDF and stacking model approach for weather forecasting in Bangladesh using historical data from 1963 to 2022.

PloS one
Forecasting the weather in an area characterized by erratic weather patterns and unpredictable climate change is a challenging endeavour. The weather is classified as a non-linear system since it is influenced by various factors that contribute to cl...

Human lung cancer classification and comprehensive analysis using different machine learning techniques.

Microscopy research and technique
Lung cancer is the most common causes of death among all cancer-related diseases. A lung scan examination of the patient is the primary diagnostic technique. This scan analysis pertains to an MRI, CT, or X-ray. The automated classification of lung ca...