AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Diagnosis, Differential

Showing 441 to 450 of 691 articles

Clear Filters

Diagnostic performance of machine learning applied to texture analysis-derived features for breast lesion characterisation at automated breast ultrasound: a pilot study.

European radiology experimental
BACKGROUND: Our aims were to determine if features derived from texture analysis (TA) can distinguish normal, benign, and malignant tissue on automated breast ultrasound (ABUS); to evaluate whether machine learning (ML) applied to TA can categorise A...

Dysmorphology in a Genomic Era.

Clinics in perinatology
Dysmorphology is the practice of defining the morphologic phenotype of syndromic disorders. Genomic sequencing has advanced our understanding of human variation and molecular dysmorphology has evolved in response to the science of relating embryologi...

Hash Transformation and Machine Learning-Based Decision-Making Classifier Improved the Accuracy Rate of Automated Parkinson's Disease Screening.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Digitalized hand-drawn pattern is a noninvasive and reproducible assistive manner to obtain hand actions and motions for evaluating functional tremors and upper-limb movement disorders. In this study, spirals and straight lines in polar coordinates a...

Deep Learning for Chest Radiograph Diagnosis in the Emergency Department.

Radiology
BackgroundThe performance of a deep learning (DL) algorithm should be validated in actual clinical situations, before its clinical implementation.PurposeTo evaluate the performance of a DL algorithm for identifying chest radiographs with clinically r...

A speckle-tracking strain-based artificial neural network model to differentiate cardiomyopathy type.

Scandinavian cardiovascular journal : SCJ
In heart failure, invasive angiography is often employed to differentiate ischaemic from non-ischaemic cardiomyopathy. We aim to examine the predictive value of echocardiographic strain features alone and in combination with other features to differ...

Classification and Diagnosis of Thyroid Carcinoma Using Reinforcement Residual Network with Visual Attention Mechanisms in Ultrasound Images.

Journal of medical systems
How to differentiate thyroid cancer nodules from a large number of benign nodules is always a challenging subject for clinicians. This paper proposes a novel Sal-deel network model to achieve the classification and diagnosis of thyroid cancer, which ...

Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms.

Journal of the European Academy of Dermatology and Venereology : JEADV
BACKGROUND: Machine learning algorithms achieve expert-level accuracy in skin lesion classification based on clinical images. However, it is not yet shown whether these algorithms could have high accuracy when embedded in a smartphone app, where imag...

Convolutional Neural Network for Differentiating Gastric Cancer from Gastritis Using Magnified Endoscopy with Narrow Band Imaging.

Digestive diseases and sciences
BACKGROUND: Early detection of early gastric cancer (EGC) allows for less invasive cancer treatment. However, differentiating EGC from gastritis remains challenging. Although magnifying endoscopy with narrow band imaging (ME-NBI) is useful for differ...