AIMC Topic: Diffusion Magnetic Resonance Imaging

Clear Filters Showing 251 to 260 of 338 articles

An improved deep network for tissue microstructure estimation with uncertainty quantification.

Medical image analysis
Deep learning based methods have improved the estimation of tissue microstructure from diffusion magnetic resonance imagingĀ (dMRI) scans acquired with a reduced number of diffusion gradients. These methods learn the mapping from diffusion signals in ...

Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke.

Stroke
Background and Purpose- Selection of patients with acute ischemic stroke for endovascular treatment generally relies on dynamic susceptibility contrast magnetic resonance imaging or computed tomography perfusion. Dynamic susceptibility contrast magne...

Prostate Cancer Detection using Deep Convolutional Neural Networks.

Scientific reports
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intens...

Joint Prediction of Breast Cancer Histological Grade and Ki-67 Expression Level Based on DCE-MRI and DWI Radiomics.

IEEE journal of biomedical and health informatics
OBJECTIVE: Histologic grade and Ki-67 proliferation status are important clinical indictors for breast cancer prognosis and treatment. The purpose of this study is to improve prediction accuracy of these clinical indicators based on tumor radiomic an...

Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma.

European journal of radiology
PURPOSE: To investigate the predictive capability of machine learning-based multiparametric magnetic resonance (MR) imaging radiomics for evaluating the aggressiveness of papillary thyroid carcinoma (PTC) preoperatively.

Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.

European radiology
OBJECTIVE: To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics feature...

A machine learning model for the prediction of survival and tumor subtype in pancreatic ductal adenocarcinoma from preoperative diffusion-weighted imaging.

European radiology experimental
BACKGROUND: To develop a supervised machine learning (ML) algorithm predicting above- versus below-median overall survival (OS) from diffusion-weighted imaging-derived radiomic features in patients with pancreatic ductal adenocarcinoma (PDAC).

MoDL-MUSSELS: Model-Based Deep Learning for Multishot Sensitivity-Encoded Diffusion MRI.

IEEE transactions on medical imaging
We introduce a model-based deep learning architecture termed MoDL-MUSSELS for the correction of phase errors in multishot diffusion-weighted echo-planar MR images. The proposed algorithm is a generalization of the existing MUSSELS algorithm with simi...

Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.

European radiology
OBJECTIVE: To present a deep learning-based approach for semi-automatic prostate cancer classification based on multi-parametric magnetic resonance (MR) imaging using a 3D convolutional neural network (CNN).

Development and validation of the automated imaging differentiation in parkinsonism (AID-P): a multicentre machine learning study.

The Lancet. Digital health
BACKGROUND: Development of valid, non-invasive biomarkers for parkinsonian syndromes is crucially needed. We aimed to assess whether non-invasive diffusion-weighted MRI can distinguish between parkinsonian syndromes using an automated imaging approac...