AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

ErbB Receptors

Showing 51 to 60 of 77 articles

Clear Filters

Deep learning-based analysis of EGFR mutation prevalence in lung adenocarcinoma H&E whole slide images.

The journal of pathology. Clinical research
EGFR mutations are a major prognostic factor in lung adenocarcinoma. However, current detection methods require sufficient samples and are costly. Deep learning is promising for mutation prediction in histopathological image analysis but has limitati...

D3EGFR: a webserver for deep learning-guided drug sensitivity prediction and drug response information retrieval for EGFR mutation-driven lung cancer.

Briefings in bioinformatics
As key oncogenic drivers in non-small-cell lung cancer (NSCLC), various mutations in the epidermal growth factor receptor (EGFR) with variable drug sensitivities have been a major obstacle for precision medicine. To achieve clinical-level drug recomm...

Deep learning-based classification of breast cancer cells using transmembrane receptor dynamics.

Bioinformatics (Oxford, England)
MOTIVATION: Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the cancer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor motions in the cell...

Radiogenomic Models Using Machine Learning Techniques to Predict EGFR Mutations in Non-Small Cell Lung Cancer.

Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
BACKGROUND: The purpose of this study was to build radiogenomics models from texture signatures derived from computed tomography (CT) and F-FDG PET-CT (FDG PET-CT) images of non-small cell lung cancer (NSCLC) with and without epidermal growth factor ...

Deep neural networks identify signaling mechanisms of ErbB-family drug resistance from a continuous cell morphology space.

Cell reports
It is well known that the development of drug resistance in cancer cells can lead to changes in cell morphology. Here, we describe the use of deep neural networks to analyze this relationship, demonstrating that complex cell morphologies can encode s...

Discovery of Dual FGFR4 and EGFR Inhibitors by Machine Learning and Biological Evaluation.

Journal of chemical information and modeling
Kinase inhibitors are widely used in antitumor research, but there are still many problems such as drug resistance and off-target toxicity. A more suitable solution is to design a multitarget inhibitor with certain selectivity. Herein, computational ...

Using machine learning to improve ensemble docking for drug discovery.

Proteins
Ensemble docking has provided an inexpensive method to account for receptor flexibility in molecular docking for virtual screening. Unfortunately, as there is no rigorous theory to connect the docking scores from multiple structures to measured activ...

TMLRpred: A machine learning classification model to distinguish reversible EGFR double mutant inhibitors.

Chemical biology & drug design
The EGFR is a clinically important therapeutic drug target in lung cancer. The first-generation tyrosine kinase inhibitors used in clinics are effective against L858R-mutated EGFR. However, relapse of the disease due to the presence of resistant muta...

Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms.

Molecular imaging and biology
PURPOSE: Considerable progress has been made in the assessment and management of non-small cell lung cancer (NSCLC) patients based on mutation status in the epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene (KRAS). At the...

Predictive models for patients with lung carcinomas to identify EGFR mutation status via an artificial neural network based on multiple clinical information.

Journal of cancer research and clinical oncology
PURPOSE: Epidermal growth factor receptor (EGFR) mutation testing has several limitations. Therefore, we built predictive models to determine the EGFR mutation status of patients and guide therapeutic decision-making.