AIMC Topic: ErbB Receptors

Clear Filters Showing 51 to 60 of 82 articles

Using machine learning to improve ensemble docking for drug discovery.

Proteins
Ensemble docking has provided an inexpensive method to account for receptor flexibility in molecular docking for virtual screening. Unfortunately, as there is no rigorous theory to connect the docking scores from multiple structures to measured activ...

Radiogenomic Models Using Machine Learning Techniques to Predict EGFR Mutations in Non-Small Cell Lung Cancer.

Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
BACKGROUND: The purpose of this study was to build radiogenomics models from texture signatures derived from computed tomography (CT) and F-FDG PET-CT (FDG PET-CT) images of non-small cell lung cancer (NSCLC) with and without epidermal growth factor ...

Predictive models for patients with lung carcinomas to identify EGFR mutation status via an artificial neural network based on multiple clinical information.

Journal of cancer research and clinical oncology
PURPOSE: Epidermal growth factor receptor (EGFR) mutation testing has several limitations. Therefore, we built predictive models to determine the EGFR mutation status of patients and guide therapeutic decision-making.

Machine Learning Approaches to Radiogenomics of Breast Cancer using Low-Dose Perfusion Computed Tomography: Predicting Prognostic Biomarkers and Molecular Subtypes.

Scientific reports
Radiogenomics investigates the relationship between imaging phenotypes and genetic expression. Breast cancer is a heterogeneous disease that manifests complex genetic changes and various prognosis and treatment response. We investigate the value of m...

Cross-registry neural domain adaptation to extract mutational test results from pathology reports.

Journal of biomedical informatics
OBJECTIVE: We study the performance of machine learning (ML) methods, including neural networks (NNs), to extract mutational test results from pathology reports collected by cancer registries. Given the lack of hand-labeled datasets for mutational te...

Recognition of early and late stages of bladder cancer using metabolites and machine learning.

Metabolomics : Official journal of the Metabolomic Society
INTRODUCTION: Bladder cancer (BCa) is one of the most common and aggressive cancers. It is the sixth most frequently occurring cancer in men and its rate of occurrence increases with age. The current method of BCa diagnosis includes a cystoscopy and ...

Toward automatic prediction of EGFR mutation status in pulmonary adenocarcinoma with 3D deep learning.

Cancer medicine
To develop a deep learning system based on 3D convolutional neural networks (CNNs), and to automatically predict EGFR-mutant pulmonary adenocarcinoma in CT images. A dataset of 579 nodules with EGFR mutation status labels of mutant (Mut) or wild-type...

Automated Stoichiometry Analysis of Single-Molecule Fluorescence Imaging Traces via Deep Learning.

Journal of the American Chemical Society
The stoichiometry of protein complexes is precisely regulated in cells and is fundamental to protein function. Singe-molecule fluorescence imaging based photobleaching event counting is a new approach for protein stoichiometry determination under phy...

Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning.

The European respiratory journal
Epidermal growth factor receptor (EGFR) genotyping is critical for treatment guidelines such as the use of tyrosine kinase inhibitors in lung adenocarcinoma. Conventional identification of EGFR genotype requires biopsy and sequence testing which is i...

Design and synthesis of new phthalazine-based derivatives as potential EGFR inhibitors for the treatment of hepatocellular carcinoma.

Bioorganic chemistry
Searching for new leads in the battle of cancer will never ends, we herein disclose the design and synthesis of new phthalazine derivatives and their in vitro and in vivo testing for their antiproliferative activity. Phthalazine was selected as a pri...