AIMC Topic: Esophageal Neoplasms

Clear Filters Showing 31 to 40 of 272 articles

Prognostic Impact of Tumor Cell Nuclear Size Assessed by Artificial Intelligence in Esophageal Squamous Cell Carcinoma.

Laboratory investigation; a journal of technical methods and pathology
Tumor cell nuclear size (NS) indicates malignant potential in breast cancer; however, its clinical significance in esophageal squamous cell carcinoma (ESCC) is unknown. Artificial intelligence (AI) can quantitatively evaluate histopathological findin...

Deep learning detected histological differences between invasive and non-invasive areas of early esophageal cancer.

Cancer science
The depth of invasion plays a critical role in predicting the prognosis of early esophageal cancer, but the reasons behind invasion and the changes occurring in invasive areas are still not well understood. This study aimed to explore the morphologic...

Development of Deep Learning-Based Virtual Lugol Chromoendoscopy for Superficial Esophageal Squamous Cell Carcinoma.

Journal of gastroenterology and hepatology
BACKGROUND: Lugol chromoendoscopy has been shown to increase the sensitivity of detection of esophageal squamous cell carcinoma (ESCC). We aimed to develop a deep learning-based virtual lugol chromoendoscopy (V-LCE) method.

Utilizing machine learning approaches to investigate the relationship between cystatin C and serious complications in esophageal cancer patients after esophagectomy.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
BACKGROUND: The purpose of this study is to investigate the relationship between preoperative cystatin C levels and the risk of serious postoperative complications in esophageal cancer (EC) patients, utilizing advanced machine learning (ML) methodolo...

Machine learning to predict lymph node metastasis in T1 esophageal squamous cell carcinoma: a multicenter study.

International journal of surgery (London, England)
BACKGROUND: Existing models do poorly when it comes to quantifying the risk of lymph node metastases (LNM). This study aimed to develop a machine-learning model for LNM in patients with T1 esophageal squamous cell carcinoma (ESCC).

Comparison of machine learning methods for Predicting 3-Year survival in elderly esophageal squamous cancer patients based on oxidative stress.

BMC cancer
BACKGROUND: Oxidative stress process plays a key role in aging and cancer; however, currently, there is paucity of machine-learning model studies investigating the relationship between oxidative stress and prognosis of elderly patients with esophagea...

Prediction of esophageal fistula in radiotherapy/chemoradiotherapy for patients with advanced esophageal cancer by a clinical-deep learning radiomics model : Prediction of esophageal fistula in radiotherapy/chemoradiotherapy patients.

BMC medical imaging
BACKGROUND: Esophageal fistula (EF), a rare and potentially fatal complication, can be better managed with predictive models for personalized treatment plans in esophageal cancers. We aim to develop a clinical-deep learning radiomics model for effect...

A F-FDG PET/CT-based deep learning-radiomics-clinical model for prediction of cervical lymph node metastasis in esophageal squamous cell carcinoma.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: To develop an artificial intelligence (AI)-based model using Radiomics, deep learning (DL) features extracted from F-fluorodeoxyglucose (F-FDG) Positron emission tomography/Computed Tomography (PET/CT) images of tumor and cervical lymph n...

Integrated analysis of gene expressions and targeted mirnas for explaining crosstalk between oral and esophageal squamous cell carcinomas through an interpretable machine learning approach.

Medical & biological engineering & computing
This study explores the bidirectional relation of esophageal squamous cell carcinoma (ESCC) and oral squamous cell carcinoma (OSCC), examining shared risk factors and underlying molecular mechanisms. By employing random forest (RF) classifier, enhanc...

Raman fiber-optic probe for rapid diagnosis of gastric and esophageal tumors with machine learning analysis or similarity assessments: a comparative study.

Analytical and bioanalytical chemistry
Gastric and esophageal cancers, the predominant forms of upper gastrointestinal malignancies, contribute significantly to global cancer mortality. Routine detection methods, including medical imaging, endoscopic examination, and pathological biopsy, ...