AIMC Topic:
Female

Clear Filters Showing 1691 to 1700 of 24669 articles

Joint fusion of EHR and ECG data using attention-based CNN and ViT for predicting adverse clinical endpoints in percutaneous coronary intervention patients.

Computers in biology and medicine
Predicting post-Percutaneous Coronary Intervention (PCI) outcomes is crucial for effective patient management and quality improvement in healthcare. However, achieving accurate predictions requires the integration of multimodal clinical data, includi...

Development of Hybrid radiomic Machine learning models for preoperative prediction of meningioma grade on multiparametric MRI.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
PURPOSE: To develop and compare machine learning models for distinguishing low and high grade meningiomas on multiparametric MRI.

Item Response Modeling and Artificial Neural Network for Differentiation of Parkinson's Patients and Subjects Without Evidence of Dopaminergic Deficit.

CPT: pharmacometrics & systems pharmacology
Approximately 15% of patients suspected of having Parkinson's disease (PD) present dopamine active transporter (DaT) scans without evidence of dopaminergic deficits (SWEDD), most of which will never develop PD. Leveraging Movement Disorders Society U...

Determining the Importance of Lifestyle Risk Factors in Predicting Binge Eating Disorder After Bariatric Surgery Using Machine Learning Models and Lifestyle Scores.

Obesity surgery
BACKGROUND: This study was conducted to assess the association between lifestyle risk factors (LRF) and odds of binge eating disorder (BED) 2 years post laparoscopic sleeve gastrectomy (LSG) using lifestyle score (LS) and machine learning (ML) models...

Evaluating the role of AI chatbots in patient education for abdominal aortic aneurysms: a comparison of ChatGPT and conventional resources.

ANZ journal of surgery
BACKGROUNDS: Abdominal aortic aneurysms (AAA) carry significant risks, yet patient understanding is often limited, with online resources typically low quality. ChatGPT, an artificial intelligence (AI) chatbot, presents a new frontier in patient educa...

A machine learning approach to predict treatment efficacy and adverse effects in major depression using CYP2C19 and clinical-environmental predictors.

Psychiatric genetics
BACKGROUND: Major depressive disorder (MDD) is among the leading causes of disability worldwide and treatment efficacy is variable across patients. Polymorphisms in cytochrome P450 2C19 (CYP2C19) play a role in response and side effects to medication...

Predicting Readmission Among High-Risk Discharged Patients Using a Machine Learning Model With Nursing Data: Retrospective Study.

JMIR medical informatics
BACKGROUND: Unplanned readmissions increase unnecessary health care costs and reduce the quality of care. It is essential to plan the discharge care from the beginning of hospitalization to reduce the risk of readmission. Machine learning-based readm...

Investigating Whether AI Will Replace Human Physicians and Understanding the Interplay of the Source of Consultation, Health-Related Stigma, and Explanations of Diagnoses on Patients' Evaluations of Medical Consultations: Randomized Factorial Experiment.

Journal of medical Internet research
BACKGROUND: The increasing use of artificial intelligence (AI) in medical diagnosis and consultation promises benefits such as greater accuracy and efficiency. However, there is little evidence to systematically test whether the ideal technological p...

Deep learning for hepatocellular carcinoma recurrence before and after liver transplantation: a multicenter cohort study.

Scientific reports
Hepatocellular carcinoma (HCC) recurrence after liver transplantation (LT) is a major contributor to mortality. We developed a recurrence prediction system for HCC patients before and after LT. Data from patients with HCC who underwent LT were retros...