AIMC Topic:
Female

Clear Filters Showing 1711 to 1720 of 24669 articles

Predicting the complexity of minimally invasive liver resection for hepatocellular carcinoma using machine learning.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: Despite technical advancements, minimally invasive liver surgery (MILS) for hepatocellular carcinoma (HCC) remains challenging. Nonetheless, effective tools to assess MILS complexity are still lacking. Machine learning (ML) models could i...

Indication model for laparoscopic repeat liver resection in the era of artificial intelligence: machine learning prediction of surgical indication.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: Laparoscopic repeat liver resection (LRLR) is still a challenging technique and requires a careful selection of indications. However, the current difficulty scoring system is not suitable for selecting indications. The purpose of this stu...

Comparison of predictive models for knee pain and analysis of individual and physical activity variables using interpretable machine learning.

The Knee
BACKGROUND: Knee pain is associated with not only individual factors such as age and obesity but also physical activity factors such as occupational activities and exercise, which has a significant impact on the lives of adults and the elderly.

Circadian rhythm modulation in heart rate variability as potential biomarkers for major depressive disorder: A machine learning approach.

Journal of psychiatric research
Major depressive disorder (MDD) is associated with reduced heart rate variability (HRV), but its link to circadian rhythm modulation (CRM) of HRV is unclear. Given that depression disrupts circadian rhythms, assessing HRV fluctuations may better capt...

Initial study of verbal and nonverbal communication training through the collaborative operation of a humanoid robot for individuals with autism spectrum disorder.

Asian journal of psychiatry
Individuals with autism spectrum disorder (ASD) experience difficulties in both verbal and nonverbal communication. Collaborative work allows them to use and develop their nonverbal communication abilities. Therefore, we developed a collaborative wor...

Prediction of clinical risk factors in pregnancy using optimized neural network scheme.

Placenta
Women should be aware of prenancy related health issues. A user-friendly model is developed in which the patients can use as well as clinicians to determine the risks associated with foetal development inside the womb, birth weight, whose effects are...

Analysis of AI foundation model features decodes the histopathologic landscape of HPV-positive head and neck squamous cell carcinomas.

Oral oncology
OBJECTIVES: Human papillomavirus (HPV) influences the pathobiology of Head and Neck Squamous Cell Carcinomas (HSNCCs). While deep learning shows promise in detecting HPV from hematoxylin and eosin (H&E) stained slides, the histologic features utilize...

Healthcare leaders' perceptions of the contribution of artificial intelligence to person-centred care: An interview study.

Scandinavian journal of public health
AIMS: The aim of this study was to explore healthcare leaders' perceptions of the contribution of artificial intelligence (AI) to person-centred care (PCC).

Assessments of lung nodules by an artificial intelligence chatbot using longitudinal CT images.

Cell reports. Medicine
Large language models have shown efficacy across multiple medical tasks. However, their value in the assessment of longitudinal follow-up computed tomography (CT) images of patients with lung nodules is unclear. In this study, we evaluate the ability...