AI Medical Compendium Topic:
Female

Clear Filters Showing 781 to 790 of 24047 articles

Machine learning-based radiomics using MRI to differentiate early-stage Duchenne and Becker muscular dystrophy in children.

BMC musculoskeletal disorders
OBJECTIVES: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) present similar symptoms in the early stage, complicating their differentiation. This study aims to develop a classification model using radiomic features from MRI T2-w...

Network-based predictive models for artificial intelligence: an interpretable application of machine learning techniques in the assessment of depression in stroke patients.

BMC geriatrics
BACKGROUND: Depression is a common complication after a stroke that may lead to increased disability and decreased quality of life. The objective of this study was to develop and validate an interpretable predictive model to assess the risk of depres...

Optimizing heart disease diagnosis with advanced machine learning models: a comparison of predictive performance.

BMC cardiovascular disorders
Cardiovascular disease is the leading cause of mortality globally, necessitating precise and prompt predictive instruments to enhance patient outcomes. In recent years, machine learning methodologies have demonstrated significant potential in enhanci...

A stacking ensemble machine learning model for predicting postoperative axial pain intensity in patients with degenerative cervical myelopathy.

Scientific reports
Machine learning (ML) has been extensively utilized to predict complications associated with various diseases. This study aimed to develop ML-based classifiers employing a stacking ensemble strategy to forecast the intensity of postoperative axial pa...

Machine learning analysis of cardiovascular risk factors and their associations with hearing loss.

Scientific reports
Hearing loss poses immense burden worldwide and early detection is crucial. The accurate models identify high-risk groups, enabling timely intervention to improve quality of life. The subtle changes in hearing often go unnoticed, presenting a challen...

Vowel segmentation impact on machine learning classification for chronic obstructive pulmonary disease.

Scientific reports
Vowel-based voice analysis is gaining attention as a potential non-invasive tool for COPD classification, offering insights into phonatory function. The growing need for voice data has necessitated the adoption of various techniques, including segmen...

Machine learning-based prediction of vesicoureteral reflux outcomes in infants under antibiotic prophylaxis.

Scientific reports
We aimed to investigate the independent outcome predictors of continuous antibiotic prophylaxis (CAP) in vesicoureteral reflux, train a model to predict the outcome, and evaluate which infants should be referred for endoscopic vesicoureteral reflux c...

Deep learning on T2WI to predict the muscle-invasive bladder cancer: a multi-center clinical study.

Scientific reports
To develop a deep learning (DL) model based on MRI to predict muscle-invasive bladder cancer (MIBC). A total of 559 patients, including 521 patients in our center and 38 patients in external centers were collected from 2012 to 2023 to construct the D...

Improving diagnosis-based quality measures: an application of machine learning to the prediction of substance use disorder among outpatients.

BMJ open quality
OBJECTIVE: Substance use disorder (SUD) is clinically under-detected and under-documented. We built and validated machine learning (ML) models to estimate SUD prevalence from electronic health record (EHR) data and to assess variation in facility-lev...

Identification of novel inflammatory response-related biomarkers in patients with ischemic stroke based on WGCNA and machine learning.

European journal of medical research
BACKGROUND: Ischemic stroke (IS) is one of the most common causes of disability in adults worldwide. This study aimed to identify key genes related to the inflammatory response to provide insights into the mechanisms and management of IS.