AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Follow-Up Studies

Showing 201 to 210 of 723 articles

Clear Filters

A machine learning approach to screen for preclinical Alzheimer's disease.

Neurobiology of aging
Combining multimodal biomarkers could help in the early diagnosis of Alzheimer's disease (AD). We included 304 cognitively normal individuals from the INSIGHT-preAD cohort. Amyloid and neurodegeneration were assessed on F-florbetapir and F-fluorodeox...

Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer.

International journal of cancer
High levels of microsatellite instability (MSI-H) occurs in about 15% of sporadic colorectal cancer (CRC) and is an important predictive marker for response to immune checkpoint inhibitors. To test the feasibility of a deep learning (DL)-based classi...

Prediction of causative genes in inherited retinal disorder from fundus photography and autofluorescence imaging using deep learning techniques.

The British journal of ophthalmology
BACKGROUND/AIMS: To investigate the utility of a data-driven deep learning approach in patients with inherited retinal disorder (IRD) and to predict the causative genes based on fundus photography and fundus autofluorescence (FAF) imaging.

Machine learning algorithm for characterizing risks of hypertension, at an early stage in Bangladesh.

Diabetes & metabolic syndrome
BACKGROUND AND AIMS: Hypertension has become a major public health issue as the prevalence and risk of premature death and disability among adults due to hypertension has increased globally. The main objective is to characterize the risk factors of h...

Predicting plaque vulnerability change using intravascular ultrasound + optical coherence tomography image-based fluid-structure interaction models and machine learning methods with patient follow-up data: a feasibility study.

Biomedical engineering online
BACKGROUND: Coronary plaque vulnerability prediction is difficult because plaque vulnerability is non-trivial to quantify, clinically available medical image modality is not enough to quantify thin cap thickness, prediction methods with high accuraci...

Artificial neural networks for multi-omics classifications of hepato-pancreato-biliary cancers: towards the clinical application of genetic data.

European journal of cancer (Oxford, England : 1990)
PURPOSE: Several multi-omics classifications have been proposed for hepato-pancreato-biliary (HPB) cancers, but these classifications have not proven their role in the clinical practice and been validated in external cohorts.

Distant metastasis time to event analysis with CNNs in independent head and neck cancer cohorts.

Scientific reports
Deep learning models based on medical images play an increasingly important role for cancer outcome prediction. The standard approach involves usage of convolutional neural networks (CNNs) to automatically extract relevant features from the patient's...