AIMC Topic: Follow-Up Studies

Clear Filters Showing 51 to 60 of 750 articles

Machine learning-based prediction of elevated N terminal pro brain natriuretic peptide among US general population.

ESC heart failure
AIMS: Natriuretic peptide-based pre-heart failure screening has been proposed in recent guidelines. However, an effective strategy to identify screening targets from the general population, more than half of which are at risk for heart failure or pre...

A Novel Management Challenge in Age-Related Macular Degeneration: Artificial Intelligence and Expert Prediction of Geographic Atrophy.

Ophthalmology. Retina
PURPOSE: The progression of geographic atrophy (GA) secondary to age-related macular degeneration is highly variable among individuals. Prediction of the progression is critical to identify patients who will benefit most from the first treatments cur...

Artificial intelligence algorithms enhance urine cytology reporting confidence in postoperative follow-up for upper urinary tract urothelial carcinoma.

International urology and nephrology
PURPOSE: In Taiwan, the incidence of urothelial carcinoma of the upper urinary tract (UTUC) is high and intravesical recurrence is approximately 22%-47%. Thus, postoperative cystoscopy and urine cytology follow-up, which require experienced cytologis...

Deep Learning Predicts Lymphovascular Invasion Status in Muscle Invasive Bladder Cancer Histopathology.

Annals of surgical oncology
BACKGROUND: Lymphovascular invasion (LVI) is linked to poor prognosis in patients with muscle-invasive bladder cancer (MIBC). Accurately identifying the LVI status in MIBC patients is crucial for effective risk stratification and precision treatment....

Application of Artificial Intelligence in the Diagnosis, Follow-Up and Prediction of Treatment of Ophthalmic Diseases.

Seminars in ophthalmology
PURPOSE: To describe the application of artificial intelligence (AI) in ophthalmic diseases and its possible future directions.

A machine learning tool for identifying newly diagnosed heart failure in individuals with known diabetes in primary care.

ESC heart failure
AIMS: We aimed to create a predictive model utilizing machine learning (ML) to identify new cases of congestive heart failure (CHF) in individuals with diabetes in primary health care (PHC) through the analysis of diagnostic data.

Development and application of explainable artificial intelligence using machine learning classification for long-term facial nerve function after vestibular schwannoma surgery.

Journal of neuro-oncology
PURPOSE: Vestibular schwannomas (VSs) represent the most common cerebellopontine angle tumors, posing a challenge in preserving facial nerve (FN) function during surgery. We employed the Extreme Gradient Boosting machine learning classifier to predic...

Utilizing echocardiography and unsupervised machine learning for heart failure risk identification.

International journal of cardiology
BACKGROUND: Global longitudinal strain (GLS) is recognized as a powerful predictor of heart failure (HF). However, the entire strain curve may entail important prognostic information regarding HF risk that might be undiscovered by only focusing on th...

Effect of childhood atropine treatment on adult choroidal thickness using sequential deep learning-enabled segmentation.

Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
PURPOSE: To describe choroidal thickness measurements using a sequential deep learning segmentation in adults who received childhood atropine treatment for myopia control.