AIMC Topic: Genome-Wide Association Study

Clear Filters Showing 11 to 20 of 294 articles

Generative prediction of causal gene sets responsible for complex traits.

Proceedings of the National Academy of Sciences of the United States of America
The relationship between genotype and phenotype remains an outstanding question for organism-level traits because these traits are generally . The challenge arises from complex traits being determined by a combination of multiple genes (or loci), whi...

Detecting genetic interactions with visible neural networks.

Communications biology
Non-linear interactions among single nucleotide polymorphisms (SNPs), genes, and pathways play an important role in human diseases, but identifying these interactions is a challenging task. Neural networks are state-of-the-art predictors in many doma...

Epistasis regulates genetic control of cardiac hypertrophy.

Nature cardiovascular research
Although genetic variant effects often interact nonadditively, strategies to uncover epistasis remain in their infancy. Here we develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy, u...

Performance of deep-learning-based approaches to improve polygenic scores.

Nature communications
Polygenic scores, which estimate an individual's genetic propensity for a disease or trait, have the potential to become part of genomic healthcare. Neural-network based deep-learning has emerged as a method of intense interest to model complex, nonl...

Bridging Genomic Research Disparities in Osteoporosis GWAS: Insights for Diverse Populations.

Current osteoporosis reports
PURPOSE OF REVIEW: Genome-wide association studies (GWAS) have significantly advanced osteoporosis research by identifying genetic loci associated with bone mineral density (BMD) and fracture risk. However, disparities persist due to the underreprese...

Transcripts and genomic intervals associated with variation in metabolite abundance in maize leaves under field conditions.

BMC genomics
Plants exhibit extensive environment-dependent intraspecific metabolic variation, which likely plays a role in determining variation in whole plant phenotypes. However, much of the work seeking to use natural variation to link genes and transcript's ...

Epigenome-wide association study identifies a specific panel of DNA methylation signatures for antenatal and postpartum depressive symptoms.

Journal of affective disorders
Depression during pregnancy and postpartum poses significant risks to both maternal and child well-being. The underlying biological mechanisms are unclear, but epigenetic variation could be exploited as a plausible candidate for early detection. We i...

Breaking down data silos across companies to train genome-wide predictions: A feasibility study in wheat.

Plant biotechnology journal
Big data, combined with artificial intelligence (AI) techniques, holds the potential to significantly enhance the accuracy of genome-wide predictions. Motivated by the success reported for wheat hybrids, we extended the scope to inbred lines by integ...

Prediction of new-onset migraine using clinical-genotypic data from the HUNT Study: a machine learning analysis.

The journal of headache and pain
BACKGROUND: Migraine is associated with a range of symptoms and comorbid disorders and has a strong genetic basis, but the currently identified risk loci only explain a small portion of the heritability, often termed the "missing heritability". We ai...

Biological Prior Knowledge-Embedded Deep Neural Network for Plant Genomic Prediction.

Genes
Genomic prediction is a powerful approach that predicts phenotypic traits from genotypic information, enabling the acceleration of trait improvement in plant breeding. Traditional genomic prediction methods have primarily relied on linear mixed mode...