AIMC Topic: Glaucoma, Open-Angle

Clear Filters Showing 11 to 20 of 52 articles

Multimodal Deep Learning Classifier for Primary Open Angle Glaucoma Diagnosis Using Wide-Field Optic Nerve Head Cube Scans in Eyes With and Without High Myopia.

Journal of glaucoma
PRCIS: An optical coherence tomography (OCT)-based multimodal deep learning (DL) classification model, including texture information, is introduced that outperforms single-modal models and multimodal models without texture information for glaucoma di...

Deep Learning-Based Noise Reduction Improves Optical Coherence Tomography Angiography Imaging of Radial Peripapillary Capillaries in Advanced Glaucoma.

Current eye research
PURPOSE: We applied deep learning-based noise reduction (NR) to optical coherence tomography-angiography (OCTA) images of the radial peripapillary capillaries (RPCs) in eyes with glaucoma and investigated the usefulness of this method as an objective...

Automated diagnosing primary open-angle glaucoma from fundus image by simulating human's grading with deep learning.

Scientific reports
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Although deep learning methods have been proposed to diagnose POAG, it remains challenging to develop a robust and explainable algorithm to automatically facil...

Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images.

Experimental eye research
The purpose of this study was to develop an automatic deep learning-based approach and corresponding free, open-source software to perform segmentation of the Schlemm's canal (SC) lumen in optical coherence tomography (OCT) scans of living mouse eyes...

Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology.

American journal of human genetics
Genome-wide association studies (GWASs) require accurate cohort phenotyping, but expert labeling can be costly, time intensive, and variable. Here, we develop a machine learning (ML) model to predict glaucomatous optic nerve head features from color ...

Aqueous autotaxin and TGF-βs are promising diagnostic biomarkers for distinguishing open-angle glaucoma subtypes.

Scientific reports
The purpose of this study is to examine if aqueous autotaxin (ATX) and TGF-β levels could be used for differentiating glaucoma subtypes. This prospective observational study was performed using aqueous humor samples obtained from 281 consecutive pati...

Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data.

Ophthalmology
PURPOSE: Rule-based approaches to determining glaucoma progression from visual fields (VFs) alone are discordant and have tradeoffs. To detect better when glaucoma progression is occurring, we used a longitudinal data set of merged VF and clinical da...

Deep learning classification of early normal-tension glaucoma and glaucoma suspects using Bruch's membrane opening-minimum rim width and RNFL.

Scientific reports
We aimed to classify early normal-tension glaucoma (NTG) and glaucoma suspect (GS) using Bruch's membrane opening-minimum rim width (BMO-MRW), peripapillary retinal nerve fiber layer (RNFL), and the color classification of RNFL based on a deep-learni...