AIMC Topic: Glycated Hemoglobin

Clear Filters Showing 1 to 10 of 80 articles

Data-driven diabetes mellitus prediction and management: a comparative evaluation of decision tree classifier and artificial neural network models along with statistical analysis.

Scientific reports
Diabetes Mellitus is a chronic metabolic disorder affecting a substantial global population leading to complications such as retinopathy, nephropathy, neuropathy, foot problems, heart attacks, and strokes if left unchecked. Prompt detection and diagn...

Development and validation of predictive models for diabetic retinopathy using machine learning.

PloS one
OBJECTIVE: This study aimed to develop and compare machine learning models for predicting diabetic retinopathy (DR) using clinical and biochemical data, specifically logistic regression, random forest, XGBoost, and neural networks.

Optimising test intervals for individuals with type 2 diabetes: A machine learning approach.

PloS one
BACKGROUND: Chronic disease monitoring programs often adopt a one-size-fits-all approach that does not consider variation in need, potentially leading to excessive or insufficient support for patients at different risk levels. Machine learning (ML) d...

Use of Machine Learning to Predict Individual Postprandial Glycemic Responses to Food Among Individuals With Type 2 Diabetes in India: Protocol for a Prospective Cohort Study.

JMIR research protocols
BACKGROUND: Type 2 diabetes (T2D) is a leading cause of premature morbidity and mortality globally and affects more than 100 million people in the world's most populous country, India. Nutrition is a critical and evidence-based component of effective...

Predictors of glycaemic improvement in children and young adults with type 1 diabetes and very elevated HbA1c using the MiniMed 780G system.

Diabetes, obesity & metabolism
AIMS: This study aimed to identify key factors with the greatest influence on glycaemic outcomes in young individuals with type 1 diabetes (T1D) and very elevated glycaemia after 3 months of automated insulin delivery (AID).

Perspective: Multiomics and Artificial Intelligence for Personalized Nutritional Management of Diabetes in Patients Undergoing Peritoneal Dialysis.

Advances in nutrition (Bethesda, Md.)
Managing diabetes in patients on peritoneal dialysis (PD) is challenging due to the combined effects of dietary glucose, glucose from dialysate, and other medical complications. Advances in technology that enable continuous biological data collection...

Blood Biomarker Signatures for Slow Gait Speed in Older Adults: An Explainable Machine Learning Approach.

Brain, behavior, and immunity
Maintaining physical function is crucial for independent living in older adults, with gait speed being a key predictor of health outcomes. Blood biomarkers may potentially monitor older adults' mobility, yet their association with slow gait speed sti...