AIMC Topic: Heart Disease Risk Factors

Clear Filters Showing 41 to 50 of 61 articles

Deep convolutional neural networks to predict cardiovascular risk from computed tomography.

Nature communications
Coronary artery calcium is an accurate predictor of cardiovascular events. While it is visible on all computed tomography (CT) scans of the chest, this information is not routinely quantified as it requires expertise, time, and specialized equipment....

Ischemia and outcome prediction by cardiac CT based machine learning.

The international journal of cardiovascular imaging
Cardiac CT using non-enhanced coronary artery calcium scoring (CACS) and coronary CT angiography (cCTA) has been proven to provide excellent evaluation of coronary artery disease (CAD) combining anatomical and morphological assessment of CAD for card...

From CT to artificial intelligence for complex assessment of plaque-associated risk.

The international journal of cardiovascular imaging
The recent technological developments in the field of cardiac imaging have established coronary computed tomography angiography (CCTA) as a first-line diagnostic tool in patients with suspected coronary artery disease (CAD). CCTA offers robust inform...

Leisure time physical activity is associated with improved HDL functionality in high cardiovascular risk individuals: a cohort study.

European journal of preventive cardiology
AIMS: Physical activity has consistently been shown to improve cardiovascular health and high-density lipoprotein-cholesterol levels. However, only small and heterogeneous studies have investigated the effect of exercise on high-density lipoprotein f...

Interpretable machine learning analysis of immunoinflammatory biomarkers for predicting CHD among NAFLD patients.

Cardiovascular diabetology
BACKGROUND: Coronary Heart Disease (CHD) and Non-Alcoholic Fatty Liver Disease (NAFLD) share overlapping pathogenic mechanisms including adipose tissue dysfunction, insulin resistance, and systemic inflammation mediated by adipokines. However, the sp...

Key factors in predictive analysis of cardiovascular risks in public health.

Scientific reports
This research emphasizes the role of analytics in evaluating the risk of disease (CVD) focusing on thorough data preparation and feature engineering for accurate predictions. We studied machine learning (ML) and learning (DL) models, such as Logistic...

Development of a machine learning model for predicting cardiovascular risk factors and major adverse cardiovascular events in young adults with glucose metabolism disorders.

Medicina clinica
BACKGROUND: Glucose metabolism disorders (GMDs) are a serious global public health issue, characterized by a high incidence rate and youthfulness. GMDs contribute to the occurrence of major adverse cardiovascular events (MACEs), meanwhile with the re...

Predicting cardiovascular risk with hybrid ensemble learning and explainable AI.

Scientific reports
Cardiovascular diseases (CVDs) are still one of the leading causes of death globally, underscoring the importance of early and right risk prediction for effective preventive measures and therapeutic approaches. This study proposes an innovative hybri...