AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Heart Failure

Showing 81 to 90 of 425 articles

Clear Filters

Fairness gaps in Machine learning models for hospitalization and emergency department visit risk prediction in home healthcare patients with heart failure.

International journal of medical informatics
OBJECTIVES: This study aims to evaluate the fairness performance metrics of Machine Learning (ML) models to predict hospitalization and emergency department (ED) visits in heart failure patients receiving home healthcare. We analyze biases, assess pe...

Multimodal deep learning models utilizing chest X-ray and electronic health record data for predictive screening of acute heart failure in emergency department.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Ambiguity in diagnosing acute heart failure (AHF) leads to inappropriate treatment and potential side effects of rescue medications. To address this issue, this study aimed to use multimodality deep learning models combinin...

Comparison of machine learning and conventional statistical modeling for predicting readmission following acute heart failure hospitalization.

American heart journal
INTRODUCTION: Developing accurate models for predicting the risk of 30-day readmission is a major healthcare interest. Evidence suggests that models developed using machine learning (ML) may have better discrimination than conventional statistical mo...

Explainable Machine Learning Based Prediction of Severity of Heart Failure Using Primary Electronic Health Records.

Studies in health technology and informatics
Heart Failure (HF) is a life-threatening condition. It affects more than 64 million people worldwide. Early diagnosis of HF is extremely crucial. In this study, we propose utilization of machine learning (ML) models to predict severity of HF from pri...

Prediction of 90 day readmission in heart failure with preserved ejection fraction by interpretable machine learning.

ESC heart failure
AIMS: Certain critical risk factors of heart failure with preserved ejection fraction (HFpEF) patients were significantly different from those of heart failure with reduced ejection fraction (HFrEF) patients, resulting in the limitations of existing ...

Unsupervised machine learning to identify subphenotypes among cardiac intensive care unit patients with heart failure.

ESC heart failure
AIMS: Hospitalized patients with heart failure (HF) are a heterogeneous population, with multiple phenotypes proposed. Prior studies have not examined the biological phenotypes of critically ill patients with HF admitted to the contemporary cardiac i...

Prediction of 28-Day All-Cause Mortality in Heart Failure Patients with Clostridioides difficile Infection Using Machine Learning Models: Evidence from the MIMIC-IV Database.

Cardiology
INTRODUCTION: Heart failure (HF) may induce bowel hypoperfusion, leading to hypoxia of the villa of the bowel wall and the occurrence of Clostridioides difficile infection (CDI). However, the risk factors for the development of CDI in HF patients hav...

Definition and Validation of Prognostic Phenotypes in Moderate Aortic Stenosis.

JACC. Cardiovascular imaging
BACKGROUND: Adverse outcomes from moderate aortic stenosis (AS) may be caused by progression to severe AS or by the effects of comorbidities. In the absence of randomized trial evidence favoring aortic valve replacement (AVR) in patients with moderat...

Characterization of cardiac resynchronization therapy response through machine learning and personalized models.

Computers in biology and medicine
INTRODUCTION: The characterization and selection of heart failure (HF) patients for cardiac resynchronization therapy (CRT) remain challenging, with around 30% non-responder rate despite following current guidelines. This study aims to propose a nove...

Use of artificial intelligence-guided echocardiography to detect cardiac dysfunction and heart valve disease in rural and remote areas: Rationale and design of the AGILE-echo trial.

American heart journal
BACKGROUND: Transthoracic echocardiography (TTE) is essential in the diagnosis of cardiovascular diseases (CVD), including but not limited to heart failure (HF) and heart valve disease (HVD). However, its dependence on expert acquisition means that i...