AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

HEK293 Cells

Showing 11 to 20 of 68 articles

Clear Filters

Easy-Prime: a machine learning-based prime editor design tool.

Genome biology
Prime editing is a revolutionary genome-editing technology that can make a wide range of precise edits in DNA. However, designing highly efficient prime editors (PEs) remains challenging. We develop Easy-Prime, a machine learning-based program traine...

Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods.

Nature communications
Efficient and precise base editors (BEs) for C-to-G transversion are highly desirable. However, the sequence context affecting editing outcome largely remains unclear. Here we report engineered C-to-G BEs of high efficiency and fidelity, with the seq...

Machine Learning Assisted Approach for Finding Novel High Activity Agonists of Human Ectopic Olfactory Receptors.

International journal of molecular sciences
Olfactory receptors (ORs) constitute the largest superfamily of G protein-coupled receptors (GPCRs). ORs are involved in sensing odorants as well as in other ectopic roles in non-nasal tissues. Matching of an enormous number of the olfactory stimulat...

Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning.

Nature cell biology
Simultaneous imaging of various facets of intact biological systems across multiple spatiotemporal scales is a long-standing goal in biology and medicine, for which progress is hindered by limits of conventional imaging modalities. Here we propose us...

Numerical learning of deep features from drug-exposed cell images to calculate IC50 without staining.

Scientific reports
To facilitate rapid determination of cellular viability caused by the inhibitory effect of drugs, numerical deep learning algorithms was used for unlabeled cell culture images captured by a light microscope as input. In this study, A549, HEK293, and ...

Nm-Nano: a machine learning framework for transcriptome-wide single-molecule mapping of 2´-O-methylation (Nm) sites in nanopore direct RNA sequencing datasets.

RNA biology
2´-O-methylation (Nm) is one of the most abundant modifications found in both mRNAs and noncoding RNAs. It contributes to many biological processes, such as the normal functioning of tRNA, the protection of mRNA against degradation by the decapping a...

Deep hybrid modeling of a HEK293 process: Combining long short-term memory networks with first principles equations.

Biotechnology and bioengineering
The combination of physical equations with deep learning is becoming a promising methodology for bioprocess digitalization. In this paper, we investigate for the first time the combination of long short-term memory (LSTM) networks with first principl...

BiLSTM- and CNN-Based m6A Modification Prediction Model for circRNAs.

Molecules (Basel, Switzerland)
m6A methylation, a ubiquitous modification on circRNAs, exerts a profound influence on RNA function, intracellular behavior, and diverse biological processes, including disease development. While prediction algorithms exist for mRNA m6A modifications...

Quantitative profiling N1-methyladenosine (m1A) RNA methylation from Oxford nanopore direct RNA sequencing data.

Methods (San Diego, Calif.)
With the recent advanced direct RNA sequencing technique that proposed by the Oxford Nanopore Technologies, RNA modifications can be detected and profiled in a simple and straightforward manner. Majority nanopore-based modification studies were devot...

Optimizing 5'UTRs for mRNA-delivered gene editing using deep learning.

Nature communications
mRNA therapeutics are revolutionizing the pharmaceutical industry, but methods to optimize the primary sequence for increased expression are still lacking. Here, we design 5'UTRs for efficient mRNA translation using deep learning. We perform polysome...