AIMC Topic: Hospitalization

Clear Filters Showing 71 to 80 of 481 articles

A Machine Learning Method for Allocating Scarce COVID-19 Monoclonal Antibodies.

JAMA health forum
IMPORTANCE: During the COVID-19 pandemic, the effective distribution of limited treatments became a crucial policy goal. Yet, limited research exists using electronic health record data and machine learning techniques, such as policy learning trees (...

Health economic evaluation of an artificial intelligence (AI)-based rapid nutritional diagnostic system for hospitalised patients: A multicentre, randomised controlled trial.

Clinical nutrition (Edinburgh, Scotland)
BACKGROUND & AIMS: Malnutrition is prevalent among hospitalised patients, and increases the morbidity, mortality, and medical costs; yet nutritional assessments on admission are not routine. This study assessed the clinical and economic benefits of u...

Development of a System for Predicting Hospitalization Time for Patients With Traumatic Brain Injury Based on Machine Learning Algorithms: User-Centered Design Case Study.

JMIR human factors
BACKGROUND: Currently, the treatment and care of patients with traumatic brain injury (TBI) are intractable health problems worldwide and greatly increase the medical burden in society. However, machine learning-based algorithms and the use of a larg...

Application of a machine learning model for early prediction of in-hospital cardiac arrests: Retrospective observational cohort study.

Medicina intensiva
OBJECTIVE: To describe the results of the application of a Machine Learning (ML) model to predict in-hospital cardiac arrests (ICA) 24 hours in advance in the hospital wards.

Predicting hospitalization costs for pulmonary tuberculosis patients based on machine learning.

BMC infectious diseases
BACKGROUND: Pulmonary tuberculosis (PTB) is a prevalent chronic disease associated with a significant economic burden on patients. Using machine learning to predict hospitalization costs can allocate medical resources effectively and optimize the cos...

A neural network approach to predict opioid misuse among previously hospitalized patients using electronic health records.

PloS one
Can Electronic Health Records (EHR) predict opioid misuse in general patient populations? This research trained three backpropagation neural networks to explore EHR predictors using existing patient data. Model 1 used patient diagnosis codes and was ...

Using machine learning methods to predict all-cause somatic hospitalizations in adults: A systematic review.

PloS one
AIM: In this review, we investigated how Machine Learning (ML) was utilized to predict all-cause somatic hospital admissions and readmissions in adults.

Identification of medication-related fall risk in adults and older adults admitted to hospital: A machine learning approach.

Geriatric nursing (New York, N.Y.)
The study aimed to develop and validate, through machine learning, a fall risk prediction model related to prescribed medications specific to adults and older adults admitted to hospital. A case-control study was carried out in a tertiary hospital, i...

Development and validation of prediction models for nosocomial infection and prognosis in hospitalized patients with cirrhosis.

Antimicrobial resistance and infection control
BACKGROUND: Nosocomial infections (NIs) frequently occur and adversely impact prognosis for hospitalized patients with cirrhosis. This study aims to develop and validate two machine learning models for NIs and in-hospital mortality risk prediction.

Artificial intelligence prediction of In-Hospital mortality in patients with dementia: A multi-center study.

International journal of medical informatics
BACKGROUND: Prediction of mortality is very important for care planning in hospitalized patients with dementia and artificial intelligence has the potential to serve as a solution; however, this issue remains unclear. Thus, this study was conducted t...