AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Hypertension

Showing 61 to 70 of 216 articles

Clear Filters

A retrospective prognostic evaluation using unsupervised learning in the treatment of COVID-19 patients with hypertension treated with ACEI/ARB drugs.

PeerJ
INTRODUCTION: This study aimed to evaluate the prognosis of patients with COVID-19 and hypertension who were treated with angiotensin-converting enzyme inhibitor (ACEI)/angiotensin receptor B (ARB) drugs and to identify key features affecting patient...

Improved hypertensive stroke classification based on multi-scale feature fusion of head axial CT angiogram and multimodal learning.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: Strokes are severe cardiovascular and circulatory diseases with two main types: ischemic and hemorrhagic. Clinically, brain images such as computed tomography (CT) and computed tomography angiography (CTA) are widely used to recognize stroke...

Artificial Intelligence-Derived Risk Prediction: A Novel Risk Calculator Using Office and Ambulatory Blood Pressure.

Hypertension (Dallas, Tex. : 1979)
BACKGROUND: Quantification of total cardiovascular risk is essential for individualizing hypertension treatment. This study aimed to develop and validate a novel, machine-learning-derived model to predict cardiovascular mortality risk using office bl...

Machine learning models for predicting blood pressure phenotypes by combining multiple polygenic risk scores.

Scientific reports
We construct non-linear machine learning (ML) prediction models for systolic and diastolic blood pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). We developed a two-model ensemble, consisting of a baselin...

A machine learning analysis of predictors of future hypertension in a young population.

Minerva cardiology and angiology
BACKGROUND: Early diagnosis of hypertension (HT) is crucial for preventing end-organ damage. This study aims to identify the risk factors for future HT in young individuals through the application of machine learning (ML) models.

Telephone follow-up based on artificial intelligence technology among hypertension patients: Reliability study.

Journal of clinical hypertension (Greenwich, Conn.)
Artificial intelligence (AI) telephone is reliable for the follow-up and management of hypertensives. It takes less time and is equivalent to manual follow-up to a high degree. We conducted a reliability study to evaluate the efficiency of AI telepho...

Ocular biomarkers: useful incidental findings by deep learning algorithms in fundus photographs.

Eye (London, England)
BACKGROUND/OBJECTIVES: Artificial intelligence can assist with ocular image analysis for screening and diagnosis, but it is not yet capable of autonomous full-spectrum screening. Hypothetically, false-positive results may have unrealized screening po...

Prediction of 24-Hour Urinary Sodium Excretion Using Machine-Learning Algorithms.

Journal of the American Heart Association
BACKGROUND: Accurate quantification of sodium intake based on self-reported dietary assessments has been a persistent challenge. We aimed to apply machine-learning (ML) algorithms to predict 24-hour urinary sodium excretion from self-reported questio...

Precise risk-prediction model including arterial stiffness for new-onset atrial fibrillation using machine learning techniques.

Journal of clinical hypertension (Greenwich, Conn.)
Atrial fibrillation (AF) is the most common clinically significant cardiac arrhythmia and is an important risk factor for ischemic cerebrovascular events. This study used machine learning techniques to develop and validate a new risk prediction model...