RATIONALE AND OBJECTIVES: This study aimed to develop and validate a fusion model combining MRI deep transfer learning (DTL) and radiomics for discriminating between pilocytic astrocytoma (PA) and adamantinomatous craniopharyngioma (ACP) in the sella...
Journal of vascular surgery. Venous and lymphatic disorders
Dec 16, 2024
OBJECTIVE: According to International Lymphology Society guidelines, the severity of lymphedema is determined by the difference in volume between the affected limb and the healthy side divided by the volume of the healthy side. However, this method o...
Pre-training strategies based on self-supervised learning (SSL) have demonstrated success as pretext tasks for downstream tasks in computer vision. However, while SSL methods are often domain-agnostic, their direct application to medical imaging is c...
PURPOSE: To develop a multi-parametric MRI model for the prediction of molecular subtypes of breast cancer using five types of breast cancer preoperative MRI images.
PURPOSE: The purpose of this study was to develop DiffDL, a generative diffusion probabilistic model designed to produce high-quality diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) metrics from a reduced set of diffusion-weighted...
International journal of neural systems
Dec 13, 2024
Despite several automated strategies for identification/segmentation of Multiple Sclerosis (MS) lesions in Magnetic Resonance Imaging (MRI) being developed, they consistently fall short when compared to the performance of human experts. This emphasiz...
Alzheimer's dementia (AD) is a neurodegenerative disorder that affects the central nervous system, causing the cells to stop working or die. The quality of life for individuals with AD steadily declines over time. While current treatments can relieve...
BACKGROUND: Bowel-preserving local resection of early rectal cancer is less successful if the tumor infiltrates the muscularis propria as opposed to submucosal infiltration only. Magnetic resonance imaging currently lacks the spatial resolution to pr...
Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans. Mathematical models of GBM growth can complement the data in the pred...
In this work, we present a multi-modal machine learning method to automate early glaucoma diagnosis. The proposed methodology introduces two novel aspects for automated diagnosis not previously explored in the literature: simultaneous use of ocular f...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.